盘点 gma 中为 栅格数据 设计的切片操作

   数据切片是 Python 中非常实用的方法,Numpy、Pandas 等第三方库的切片操作为数据处理提供了不少便利。如果能对栅格/矢量数据进行切片,那会使地理数据处理也变得方便和快捷。

   基于此,自 gma 2.0.6.10 开始,gma 针对 打开的栅格数据 设计了切片操作方法。

gma 网站:https://gma.luosgeo.com
PyPi 项目:https://pypi.org/project/gma/
示例数据:

  • 链接:https://pan.baidu.com/s/1zr8p0MZUDD3nWYxe2A9jzA?pwd=gj2w
  • 提取码:gj2w

栅格数据切片

from gma import io
DataSet = io.ReadRaster("NE2_50M_SR_W.tif")

一些基本方法

另存栅格数据集
DataSet.SaveAs('TestDS.tif', Format='GTiff')
栅格信息

预览

切片方法说明

DataSet[波段序号/波段序号切片, 行切片, 列切片] --> DataSet

第一个参数:整数型列表(波段序号,从 0 开始)或切片器(slice),操作波段
第二个参数:切片器(slice),操作行(Y)
第三个参数:切片器(slice),操作列(X)
可以依次配置三个参数,被忽略的参数默认为全部

示例1:波段重排

示例2:波段提取

在这里插入图片描述

示例3:对行切片

示例4:对列切片

示例5:对波段,行和列切片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛的地理研学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值