Python实现贝叶斯优化器(Bayes_opt)优化深度森林(Deep Forest)回归模型(deepforest回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

深度森林是一种基于集成学习的方法,它受到深度学习成功的启发,但不依赖于梯度下降和反向传播等复杂机制。深度森林通过堆叠多个决策树模型(通常是随机森林)并在层级结构中结合它们的输出来构建最终的模型。这种方法可以在许多情况下提供与深度神经网络相当的性能,同时减少了对计算资源的需求和训练时间。

贝叶斯优化是一种全局优化技术,主要用于黑盒函数的优化问题,这些函数往往计算成本较高且没有解析形式。贝叶斯优化通过构建代理模型(如高斯过程)来近似目标函数,并通过获取代理模型的信息来指导下一步搜索的位置。这种技术特别适用于超参数调优,因为它能够有效地探索参数空间,找到最优解。

在本项目中,我们的目标是应用贝叶斯优化来自动寻找深度森林回归模型的最佳超参数组合。通过这种方式,我们可以提高模型的预测准确性和泛化能力,同时减少手动调整参数所需的时间和精力。

本项目通过Python实现贝叶斯优化器(Bayes_opt)优化深度森林(Deep Forest)回归模型(deepforest回归算法)项目实战。   

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建贝叶斯优化算法优化深度森林回归模型 

主要使用贝叶斯优化算法优化深度森林回归算法,用于目标回归。 

6.1 构建调优模型

编号

模型名称

调优参数

1

深度森林回归模型

n_estimators

2

n_trees

3

max_layers

6.2 最优参数展示

最优参数结果展示:

6.3 最优参数构建模型 

编号

模型名称

调优参数

1

深度森林回归模型

n_estimators=int(params_best['n_estimators'])

2

n_trees=int(params_best['n_trees'])

3

max_layers=int(params_best['max_layers']

7.模型评估

7.1评估指标及结果 

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

深度森林回归模型

R方

0.9686

均方误差

1285.5238

解释方差分

0.9686

绝对误差

26.7584

从上表可以看出,R方分值为0.9686,说明模型效果比较好。

关键代码如下:  

  

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。  

8.结论与展望

综上所述,本文采用了贝叶斯优化算法寻找深度森林回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

作为一名AI语言模型,我无法直接优化代码,但是我可以给您提供一些关于使用贝叶斯优化器优化卷积神经网络的建议。贝叶斯优化器是一种优化算法,它可以在较少的尝试次数内找到最优解。在卷积神经网络中,我们可以使用贝叶斯优化器来调整超参数,例如学习率、批量大小、卷积核大小等。 以下是一些使用贝叶斯优化器优化卷积神经网络的步骤: 1. 定义目标函数:在这个步骤中,我们需要定义一个目标函数来衡量模型的性能。通常情况下,我们会使用交叉熵损失函数或均方误差函数来衡量模型的性能。 2. 定义超参数空间:在这个步骤中,我们需要定义一个超参数空间,包含我们希望调整的超参数。例如,我们可以定义一个学习率范围为0.001到0.1,批量大小范围为32到128,卷积核大小范围为3x3到5x5。 3. 初始化贝叶斯优化器:在这个步骤中,我们需要初始化贝叶斯优化器,并将目标函数和超参数空间作为参数传递给它。 4. 迭代优化:在这个步骤中,我们需要迭代地使用贝叶斯优化器来寻找最优超参数。在每次迭代中,贝叶斯优化器会根据当前的超参数空间中的已知点和目标函数的输出来选择下一个点进行评估。然后,我们使用选择的超参数来训练模型,并计算其在验证集上的性能。最后,我们将性能作为目标函数的输出,传递给贝叶斯优化器,以便它可以选择下一个点进行评估。 5. 评估最优超参数:在迭代完成后,我们可以从贝叶斯优化器中获取最优超参数,并将其用于训练最终的模型。 需要注意的是,贝叶斯优化器是一种黑盒优化算法,它并不知道我们的模型的内部结构。因此,在使用贝叶斯优化器优化卷积神经网络时,我们需要将不同的超参数组合作为模型的输入,并在目标函数中评估其性能。同时,我们还需要选择合适的目标函数和超参数空间,以提高贝叶斯优化器的效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值