基于MATLAB的SVM支持向量机的时间序列数据预测方法应用

说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取 或者私信获取。

1.项目背景

 在当今数据驱动的世界中,时间序列预测对于金融分析、气象预报、能源管理等多个领域至关重要。面对复杂且非线性的数据模式,传统的时间序列分析方法往往难以提供足够的预测精度。支持向量机(SVM),尤其是其回归形式——支持向量回归(SVR),因其强大的泛化能力和对高维空间的良好适应性,在处理非线性问题上展现出独特优势。基于MATLAB平台,本项目旨在探索和应用SVR于时间序列数据预测中,通过优化模型参数和特征工程,提升预测的准确性和稳定性。具体而言,本研究将生成合成时间序列数据,利用历史数据点作为输入特征来预测未来值,并评估模型性能。此项目的成果不仅有助于深化对时间序列预测的理解,也为相关领域的实际应用提供了高效、可靠的解决方案,展示了如何使用先进的机器学习技术解决现实世界中的预测挑战。  

本项目实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用。                 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),

数据展示如下:

3.数据预处理

3.1 查看数据

使用disp()方法查看前10行数据:

关键代码:

4.探索性数据分析

4.1 时间序列折线

用plot()方法绘制折线图:

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

按照80%训练集、20%测试集进行划分,关键代码如下: 

6.构建SVM支持向量机时间序列模型   

主要实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用,用于目标回归。                 

6.1 构建模型 

编号

模型名称

参数

1

SVM支持向量机回归模型     

'KernelFunction', 'rbf'

2

'Standardize', true

3

'Epsilon', 0.1

7.模型评估

7.1评估指标及结果  

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

SVM支持向量机回归模型      

R方

0.9662

均方误差

0.0229

解释方差分 

0.9667

绝对误差

0.1196

从上表可以看出,R方分值为0.9662,说明模型效果较好。      

关键代码如下:          

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。         

8.结论与展望  

综上所述,实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值