说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取 或者私信获取。
1.项目背景
在当今数据驱动的世界中,时间序列预测对于金融分析、气象预报、能源管理等多个领域至关重要。面对复杂且非线性的数据模式,传统的时间序列分析方法往往难以提供足够的预测精度。支持向量机(SVM),尤其是其回归形式——支持向量回归(SVR),因其强大的泛化能力和对高维空间的良好适应性,在处理非线性问题上展现出独特优势。基于MATLAB平台,本项目旨在探索和应用SVR于时间序列数据预测中,通过优化模型参数和特征工程,提升预测的准确性和稳定性。具体而言,本研究将生成合成时间序列数据,利用历史数据点作为输入特征来预测未来值,并评估模型性能。此项目的成果不仅有助于深化对时间序列预测的理解,也为相关领域的实际应用提供了高效、可靠的解决方案,展示了如何使用先进的机器学习技术解决现实世界中的预测挑战。
本项目实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),
数据展示如下:
3.数据预处理
3.1 查看数据
使用disp()方法查看前10行数据:
关键代码:
4.探索性数据分析
4.1 时间序列折线图
用plot()方法绘制折线图:
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建SVM支持向量机时间序列模型
主要实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用,用于目标回归。
6.1 构建模型
编号 | 模型名称 | 参数 |
1 | SVM支持向量机回归模型 | 'KernelFunction', 'rbf' |
2 | 'Standardize', true | |
3 | 'Epsilon', 0.1 |
7.模型评估
7.1评估指标及结果
评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
SVM支持向量机回归模型 | R方 | 0.9662 |
均方误差 | 0.0229 | |
解释方差分 | 0.9667 | |
绝对误差 | 0.1196 |
从上表可以看出,R方分值为0.9662,说明模型效果较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型效果良好。
8.结论与展望
综上所述,实现了基于MATLAB的SVM支持向量机的时间序列数据预测方法应用,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。