基于MATLAB的LDA线性判别方法的数据分类预测方法应用

说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取 或者私信获取。

1.项目背景

在当前大数据时代,数据分类与预测分析在工程、金融、医疗、社会科学等多个领域中具有重要意义。线性判别分析(LDA)作为一种经典的监督学习降维与分类方法,能够有效提取特征间的判别信息,广泛应用于模式识别和机器学习任务中。本项目基于 MATLAB 平台,利用 LDA 线性判别方法对实际数据集进行分类预测研究,旨在通过统计投影手段,最大化类间差异、最小化类内差异,从而提升分类准确率。项目将结合真实数据集,完成数据预处理、模型构建、训练与评估全过程,探索 LDA 在多维数据中的分类性能,为后续复杂模型的构建提供基础支持和技术参考。

本项目实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用。            

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量  

数据详情如下(部分展示):

3.数据预处理

3.1 查看数据

使用head()方法查看前五行数据:

关键代码:

3.2数据缺失查看与描述统计

使用summary()方法查看数据信息: 

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

4.探索性数据分析

4.1 变量柱状图

用bar()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用histogram()方法绘制直方图:

4.3 相关性分析

数据变量的相关性分析:从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

按照80%训练集、20%验证集进行划分,关键代码如下:

5.3 数据标准化

关键代码如下:

6.构建LDA线性判别分类模型 

主要实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用。            

6.1 构建模型

构建分类模型。  

模型名称

模型参数

LDA分类模型    

X_train_selected

y_train

7.模型评估

7.1评估指标及结果   

评估指标主要包括准确率、查准率、查全率、F1分值等等。 

模型名称

指标名称

指标值

测试集

LDA分类模型  

准确率

0.9100

查准率

0.8559

查全率

0.9849

F1分值 

0.9159

从上表可以看出,F1分值为0.9100,说明模型效果良好。               

关键代码如下:    

7.2 混淆矩阵

从上图可以看出,实际为0预测不为0的 有33个样本,实际为1预测不为1的 有3个样本,模型效果良好。    

8.结论与展望

综上所述,本项目实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值