说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取 或者私信获取。
1.项目背景
在当前大数据时代,数据分类与预测分析在工程、金融、医疗、社会科学等多个领域中具有重要意义。线性判别分析(LDA)作为一种经典的监督学习降维与分类方法,能够有效提取特征间的判别信息,广泛应用于模式识别和机器学习任务中。本项目基于 MATLAB 平台,利用 LDA 线性判别方法对实际数据集进行分类预测研究,旨在通过统计投影手段,最大化类间差异、最小化类内差异,从而提升分类准确率。项目将结合真实数据集,完成数据预处理、模型构建、训练与评估全过程,探索 LDA 在多维数据中的分类性能,为后续复杂模型的构建提供基础支持和技术参考。
本项目实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 查看数据
使用head()方法查看前五行数据:
关键代码:
3.2数据缺失查看与描述统计
使用summary()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
4.探索性数据分析
4.1 因变量柱状图
用bar()方法绘制柱状图:
4.2 y=1样本x1变量分布直方图
用histogram()方法绘制直方图:
4.3 相关性分析
数据变量的相关性分析:从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
按照80%训练集、20%验证集进行划分,关键代码如下:
5.3 数据标准化
关键代码如下:
6.构建LDA线性判别分类模型
主要实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用。
6.1 构建模型
构建分类模型。
模型名称 | 模型参数 |
LDA分类模型 | X_train_selected |
y_train |
7.模型评估
7.1评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
LDA分类模型 | 准确率 | 0.9100 |
查准率 | 0.8559 | |
查全率 | 0.9849 | |
F1分值 | 0.9159 |
从上表可以看出,F1分值为0.9100,说明模型效果良好。
关键代码如下:
7.2 混淆矩阵
从上图可以看出,实际为0预测不为0的 有33个样本,实际为1预测不为1的 有3个样本,模型效果良好。
8.结论与展望
综上所述,本项目实现了基于MATLAB的LDA线性判别方法的数据分类预测方法应用,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。