说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取 或者私信获取。
1.项目背景
在大数据背景下,高维数据常导致回归模型过拟合与计算效率下降,特征选择成为提升模型性能的关键环节。本研究提出一种基于改进蝙蝠算法(Modified Bat Algorithm, MBA)与BP神经网络相结合的特征选择方法。MBA在传统蝙蝠算法基础上引入自适应参数调节与局部搜索优化机制,有效提升全局搜索能力与收敛速度。通过MBA搜索最优特征子集,以BP神经网络作为评估模型,利用其非线性拟合能力精确评价特征组合的回归性能。Python凭借其强大的科学计算库(如NumPy、Scikit-learn、TensorFlow)为算法实现提供了高效支持。该方法旨在筛选出最具代表性的特征,降低模型复杂度,提高预测精度与泛化能力,适用于金融预测、工业建模等回归任务,具有良好的应用前景。
本项目通过基于MBA与BP神经网络回归模型的特征选择方法研究(Python实现)。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建特征选择模型
主要使用通过基于MBA与BP神经网络回归模型的特征选择方法研究(Python实现)。
6.1 寻找最优特征
最优特征:
6.2 最优特征构建模型
编号 | 模型名称 | 参数 |
1 | BP神经网络回归模型 | units=64 |
2 | optimizer=opt | |
3 | epochs=50 |
6.3 模型摘要信息
6.4 模型训练集测试集损失曲线图
7.模型评估
7.1评估指标及结果
评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
BP神经网络回归模型 | R方 | 0.8344 |
均方误差 | 3074.9928 | |
解释方差分 | 0.8362 | |
绝对误差 | 44.296 |
从上表可以看出,R方分值为0.8344,说明模型效果良好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型效果良好。
8.结论与展望
综上所述,本文采用了基于MBA与BP神经网络回归模型的特征选择方法研究(Python实现),最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。