TensorFlow Decision Forests
,是一个基于 Keras 的决策森林 TensorFlow 开源软件库。它旨在于将一些最前沿的决策森林算法(例如,随机森林、GBDT、LambdaMart)以一种易用的方式引入 TensorFlow 中。长时间以来,决策森林一直是建模表格类数据的最前沿机器学习算法。在许多机器学习应用(比如学习排名)中,决策森林都可提供卓越的性能。
分类和决策森林
什么是分类?
- 一个表格数据集
- 其中包含样本(行)和属性(列)
- 一些属性上类别属性,一些属性是数字属性
分类:利用模型通过其他属性预测类别属性。
分类为什么很重要?
- 可以获取不易获取或者成本高昂的数据
什么是模型?
模型:选择(或训练)能够最好的匹配可用观察结果(称为“有标签样本”)的模型。
决策树
- 一种常用模型