
目标检测论文精读
文章平均质量分 92
主要是精读目标检测方面经典论文,加深对于目标检测的理解和使用。
AI扩展坞
当你的能力支撑不了自己的野心的时候,就静下心来安心学习、等待东风来破茧重生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
目标检测论文精读汇总
目录 1 R-CNN系列(1) R-CNN灵感来源:Selective search for object recognition(2) R-CNN开山之篇:R-CNN(3) R-CNN起承转合之笔:Fast R-CNN(4) R-CNN完全深度学习大成篇:Faster R-CNN 2 YOLO系列(5)YOLO系列最快的仔:YOLO V1(6)YOLO系列重要续作:YOLO V2(5)YOLO系列原创性idea里程碑:YOLO V3(6)YOLO官方交接之棒:YOLO V4:(7)YOLO非官方异军突起、原创 2021-04-29 18:22:15 · 1342 阅读 · 0 评论 -
latex in overleaf快速通关论文排版
国内官网官网官方教程。原创 2025-08-07 21:36:52 · 768 阅读 · 0 评论 -
基于segment anything model(SAM)相关性研究的各个方向论文/项目汇总
有关anything相关的主流任务: 2d检测相关(AnyObject), 3d检测相关(Any3D),AI生成相关(AnyGeneration), AI模型优化相关(), AI任务相关, etc.AnyObject - 分割、检测、分类、医学图像、OCR、姿态等。AnyGeneration - 文本到图像的生成、编辑、修复、样式转换等。Any3D - 3D 生成、分割等。AnyModel - 任何修剪、任何量化、模型重使用。原创 2023-05-19 21:32:21 · 1311 阅读 · 0 评论 -
CV图像分类经典transformer知识整理汇总(论文解读| paper链接|论文延伸)
减少全局注意力计算量。引入卷积局部归纳偏置。原创 2023-05-19 20:16:16 · 908 阅读 · 0 评论 -
【论文解读】一文详解cascade rcnn |《Cascade R-CNN: Delving into High Quality Object Detection》| 二阶段目标检测核心源码解读
论文链接:https://arxiv.org/abs/1712.00726代码链接:https://github.com/zhaoweicai/cascade-rcnn目标检测一般是通过 iou (预测proposal与gt bbox交并比)阈值,来进行正负样本的划分,一般会取0.5,这并不算高。iou阈值越高理论上应该和gt bbox越接近,但是这样训练会导致检测效果的(检测指标,例如mAP)大大下降。主要原因有以下2点:(1) iou越高,训练过程中正样本数目越少,容易发生过拟合(2) 推理阶段原创 2023-01-30 00:00:52 · 3402 阅读 · 1 评论 -
【论文解读】一文详解RetinaNet | <Focal Loss for Dense Object Detection>|源码详解 多类别focal loss
目标识别有两大经典结构: 第一类是以Faster RCNN为代表的二阶段识别方法,这种结构的第一阶段专注于proposal的提取,第二阶段则对提取出的proposal进行分类和精确坐标回归。二阶段结构准确度较高,但因为第二阶段需要单独对每个proposal进行分类/回归,速度就打了折扣;目标识别的第二类结构是以YOLO和SSD为代表的单阶段结构,它们摒弃了提取proposal的过程,只用一级就完成了识别/回归,虽然速度较快但准确率远远比不上两级结构。那有没有办法在单阶段结构中也能实现较高的准确度呢?原创 2023-01-04 18:30:22 · 4034 阅读 · 0 评论 -
【论文解读】one-stage系列里程碑 | 目标检测real time改进篇 | YOLO V3详解
目录1.简介前言链接汇总2.主干网络2.1 总体网络2.2 bounding box预测2.3 class prediction2.4 loss计算3.实验数据3.1 数据环比4. 未竟之业5. Reference1.简介前言yolo系列是由Joseph Redmon为主导,跟他导师Ali合作的最后一个作品(2018年),也是当时目标检测一阶段的SOTA,做到了实时性和准确性的兼顾,可谓是火爆全球。但是因为其本人的政治(白左,所谓“反战“)和个人倾向原因(一夜暴富?!),这个喜好“粉红系pony”的作原创 2021-05-04 00:20:43 · 483 阅读 · 1 评论 -
【论文解读】one-stage系列开山之篇 | 目标检测速度检测大跨步 | YOLO V1详解
目录前言1.简介1.1 YOLO由来1.2 摘要1.3 代码2.YOLO网络结构详解2.1 整体介绍2.2 主干网络2.3 分类和定位方法2.4 loss计算3.实验和评估4.Reference前言关于YOLO系列的初始作者–Joseph Redmon,说实话真的是个典型的米国白左,辣眼睛的CV,不知道的还以为是那个少女心泛滥的中二,祭出来镇楼:Joseph Redmon想立就立、想当就当,想退圈就退圈,反正自己公司已经被大厂收购,早就实现了财富自由,唉,真的是。。。。anyway, 有一说一,这原创 2021-01-03 13:53:13 · 890 阅读 · 0 评论 -
【论文解读】深度学习目标检测 | R-CNN系列里程碑 | 一文弄懂Faster R-CNN
目录前言论文导读R-CNN系列发展1 简介2 Faster R-CNN网络结构2 实验和评估前言论文导读【论文解读】 图像分割 & 目标识别 | Selective Search和python实现| <Selective Search for Object Recognition>【论文解读】深度学习目标检测的开山鼻祖 |R-CNN详解 | 两阶段目标检测代表【论文解读】目标检测的发展之作|Ross大神续作 | Fast R-CNNR-CNN系列发展R-CNN 将深度学习应用到目标原创 2020-12-31 10:30:40 · 1745 阅读 · 2 评论 -
【论文解读】目标检测的发展之作|Ross大神续作 | Fast R-CNN
目录前言1 简介1.1 摘要1.2 paper自述的主要贡献2 Fast R-CNN网络结构2.1 网络结构概览2.2 提取img ROI候选框2.3 获取feature map ROI2.3.1 从整张图提取整体图像特征(feature map)2.3.1 从img ROI映射到feature map ROI2.4 ROI pooling2.5 Truncated SVD for FC2.5.1 什么要进行SVD?2.5.2 怎么进行SVD分解?2.5.2 为什么会极大减少运行时间?2.6 softmax原创 2020-12-26 18:49:29 · 942 阅读 · 2 评论 -
【论文解读】深度学习目标检测的开山鼻祖 |R-CNN详解 | 两阶段目标检测代表
目录前言目标检测近年里程碑深度学习目标检测1 R-CNN简介1.1 何为R-CNN?1.2 摘要2.Fast RCNN网络结构解析2.1 整体结构概览2.2 region proposals ---- selective search2.3 back bone --- AlexNet & vgg2.4 classfication --- SVM2.5 regression3.论文亮点4. 实验过程和结论5. 其他Reference前言目标检测近年里程碑上图,回顾近20年来的图像检测和识别的历原创 2020-12-25 18:29:30 · 1714 阅读 · 0 评论 -
[论文解读] 图像分割 & 目标识别 | Selective Search和python实现| <Selective Search for Object Recognition>
目录前言1 图像分割和目标识别过程:1.1 训练过程1.2 测试过程2 论文最大亮点 - selective search method2.1 主要思路:2.2 核心实现2.2.1 分析了颜色空间2.2.2 相似性判断标准的多样性2.2.3 初始region选择的多样性3 python源码说明3.1 相似度的实现3.2 主函数Reference前言此处只是叙述ss(selective search method)主体功能, 并且使用网上的简易实现版本-python代码,方便讲解. 官方MATLAB原创 2020-12-24 18:33:22 · 3172 阅读 · 1 评论 -
【论文解读】一文看懂yolov4 | 各种框架源码实现 | 详尽的state-of-art
目录1.前言1.1 历史渊源1.2 论文梗概1.3 效果说明2.Object detection models综述3.state-of-art目标检测技法综述3.1 思维导向图3.2 Bag of freebies数据增强数据分布偏差BBox优化3.3 Bag of specials4.YOLOv4 整体结构5.创新点综述6.学术词汇解释Reference1.前言1.1 历史渊源yolo原始作者Joseph Redmon 2020.2已经退出CV界,来自俄罗斯大神AlexeyAB接棒蓄力、在darkn原创 2020-10-29 18:24:40 · 2685 阅读 · 1 评论