从大数据量分库分表 MySQL 合并迁移数据到 TiDB

本文介绍如何使用TiDBLightning和DM实现大规模数据(TiB级别)的高效迁移,包括全量数据导入和增量数据同步的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果分表数据总规模特别大(例如大于 1 TiB),并且允许 TiDB 集群在迁移期间无其他业务写入,那么你可以使用 TiDB Lightning 对分表数据进行快速合并导入,然后根据业务需要选择是否使用 TiDB DM 进行增量数据的分表同步。本文所称“大数据量”通常指 TiB 级别以上。本文档举例介绍了导入数据的操作步骤。

如果分库分表合并迁移在 1 TiB 以内,请参考从小数据量分库分表 MySQL 合并迁移数据到 TiDB,支持全量和增量且更为简单。

使用 TiDB Lightning 快速合并导入的原理如下图所示。

在这个示例中,假设有两个数据库 my_db1 和 my_db2 ,使用 Dumpling 分别从 my_db1 中导出 table1 和 table2 两个表,从 my_db2 中导出 table3 和 table4 两个表,然后再用 TiDB Lightning 把导出的 4 个表合并导入到下游 TiDB 中的同一个库 my_db 的同一个表格 table5 中。

本文将以三个步骤演示导入流程:

  1. 使用 Dumpling 导出全量数据备份。在本文档示例中,分别从 2 个源数据库中各导出 2 个表:
    • 从 实例 1 MySQL 的 my_db1 导出 table1、table2
    • 从 实例 2 MySQL 的 my_db2 导出 table3、table4
  2. 启动 Lightning 执行导入 TiDB 中的 mydb.table5
  3. 使用 DM 进行增量数据迁移(可选)

前提条件

分表数据冲突检查

迁移中如果涉及合库合表,来自多张分表的数据可能引发主键或唯一索引的数据冲突。因此在迁移之前,需要检查各分表数据的业务特点。详情请参考跨分表数据在主键或唯一索引冲突处理,这里做简要描述:

假设 table1~4 具有相同的表结构如下:

 

CREATE TABLE `table1` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `sid` bigint(20) NOT NULL, `pid` bigint(20) NOT NULL, `comment` varchar(255) DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `sid` (`sid`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1

其中id列为主键,具有自增属性,多个分表范围重复会引发数据冲突。sid列为分片键,可以保证全局满足唯一索引。因此可以移除下游table5id列的唯一键属性


                
### 关于分表策略 分表是一种常见的数据库优化手段,主要分为两种方式:水平分表和垂直分表。 #### 水平分表 水平分表是指将同一张中的数据按某种规则拆分成多张物理,每张存储部分数据[^1]。这种方法适用于记录数非常庞大的情况,能够有效降低单数据量,从而减少查询压力并提升性能。 #### 垂直分表 垂直分表则是指将一张的字段按照访问频率或者关联性进行划分,形成几张结构不同的新[^2]。这种方式适合解决单条记录过大、字段过多的问题,能显著减少每次读写操作涉及的数据量。 --- ### 数据迁移方法及工具 当实施分表或其他扩展策略时,不可避免会涉及到数据迁移的过程。以下是几种常用的数据迁移方法: #### 手动脚本迁移 可以通过编写 SQL 脚本来完成简单的数据迁移工作。例如,在 MySQL 中可以利用 `INSERT INTO ... SELECT` 的语法来实现跨或跨库的数据复制: ```sql -- 将旧的部分数据迁移到新中 INSERT INTO new_table (column1, column2) SELECT column1, column2 FROM old_table WHERE condition; ``` #### 使用 ETL 工具 ETL(Extract-Transform-Load)工具可以帮助更高效地执行大规模数据迁移任务。常用的工具有 Talend Open Studio 和 Apache Nifi 等。它们支持复杂的转换逻辑,并提供图形化界面简化配置过程[^3]。 #### ShardingSphere 平台 ShardingSphere 是一款开源产品,专注于分布式数据库解决方案,其中包括了水平分表功能以及配套的数据迁移机制。它不仅提供了灵活的分片算法定义接口,还内置了一些自动化迁移流程辅助开发者快速部署新的架构设计。 --- ### 数据库水平扩展技术 随着业务规模的增长,单一节点可能难以满足日益增加的需求,此时就需要引入水平扩展的技术手段。下面列举了几种主流方案及其特点: #### 分布式关系型数据库 这类系统能够在底层自动处理分片与同步等问题,减轻应用层面的工作负担。典型代有阿里巴巴推出的 PolarDB-X ,谷歌开发的 Spanner & F1 体系,还有社区驱动项目 TiDB 。上述选项均具备良好的事务一致性保障能力和强大的分析查询效率。 #### NoSQL 存储引擎 对于某些特定领域内的需求来说,采用非关系模型或许更加合适。比如 Elasticsearch 面向全文检索;ClickHouse 致力于 OLAP 类报统计;MongoDB 则擅长文档形式的数据管理等等。尽管这些不属于传统意义上的 RDBMS 家族成员,却同样能在各自适用范围内发挥重要作用。 --- ### 实现细节注意事项 无论采取何种具体措施,都需要注意以下几个方面以确保整个项目的顺利推进: - **元数据维护**: 在任何类型的分区环境下都需要妥善保存关于各子集间相互联系的信息以便后续运维人员查阅调整. - **兼容性测试**: 新老版本切换期间可能会存在短暂共存期因此要提前验证两者之间交互是否存在隐患. - **回滚预案制定**: 如果正式上线后发现问题则要有清晰可行的办法迅速恢复至之前稳定状态. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天读点书学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值