一、一般性理论
1. 相位因子β\betaβ与波数kkk的关系
对于任意介质均匀分布的规则波导中传播的电磁波的相位因子β\betaβ与填充材质波数kkk及截止波数kck_ckc有如下关系
kc2=k2−β2
\begin{equation} k_c^2 = k^2 - \beta^2 \end{equation}
kc2=k2−β2
其中对于波数k有
k=ω μϵ=2π/λ
\begin{equation} k = \omega\ \sqrt[]{\mu \epsilon} = 2 \pi / \lambda \end{equation}
k=ω μϵ=2π/λ
2. TEM波
对于TEM波kc2=0k_c^2 = 0kc2=0,所以有
β=ω μϵ=k
\begin{equation} \beta = \omega\ \sqrt[]{\mu \epsilon} = k \end{equation}
β=ω μϵ=k
值得一提的是此时特性阻抗与波阻抗恰好一致,即
ZTEM=μϵ=η
\begin{equation} Z_{TEM} = \sqrt[]{\frac{\mu}{\epsilon}} = \eta \end{equation}
ZTEM=ϵμ=η
3. TE波与TM波
对于TE波与TM波有
β=k2−kc2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} \end{equation}
β=k2−kc2
4. 有损介质:
对于有损介质有
γ=αd+jβ=kc2−k2=kc2−ω2μ0ϵ0ϵr(1−jtanδ)
\begin{equation} \gamma = \alpha_d + j\beta = \sqrt[]{k_c^2 - k^2} = \sqrt[]{k_c^2 - \omega^2 \mu_0 \epsilon_0 \epsilon_r (1 - jtan \delta)} \end{equation}
γ=αd+jβ=kc2−k2=kc2−ω2μ0ϵ0ϵr(1−jtanδ)
由Taylor级数,当x≪ax\ll ax≪a时有
a2+x2≈a+12(x2a)
\begin{equation} \sqrt[]{a^2 + x^2} \approx a + \frac{1}{2} (\frac{x^2}{a}) \end{equation}
a2+x2≈a+21(ax2)
将式(7)运用于式(6)有
γ≈k2 tanδ2β+jβ
\begin{equation} \gamma \approx \frac{k^2\ tan \delta}{2\beta} + j\beta \end{equation}
γ≈2βk2 tanδ+jβ
则介质损耗衰减可由下式给出
αd=k2 tanδ2β Np/m (TE or TM waves)
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta}\ Np/m \ (TE\ or\ TM\ waves) \end{equation}
αd=2βk2 tanδ Np/m (TE or TM waves)
对于TEM波有
αd=k tanδ2 Np/m (TEM waves)
\begin{equation} \alpha_d = \frac{k\ tan\delta}{2}\ Np/m \ (TEM\ waves) \end{equation}
αd=2k tanδ Np/m (TEM waves)
二、平行平板波导
平行平板波导由两个平行的板或带构成,如下图所示,假设宽度WWW比间隔ddd大得多,这样边缘效应和xxx的变化可以忽略。假设填充介质的介电常数为ϵ\epsilonϵ、磁导率为μ\muμ。
1. TEM模
对于平行平板波导中的TEM波,有相位因子为
β=k=ω μϵ=2πf μϵ
\begin{equation} \beta = k = \omega\ \sqrt[]{\mu \epsilon} = 2\pi f\ \sqrt[]{\mu \epsilon} \end{equation}
β=k=ω μϵ=2πf μϵ
介质损耗为
αd=k tanδ2 Np/m (TEM waves)
\begin{equation} \alpha_d = \frac{k\ tan\delta}{2}\ Np/m \ (TEM\ waves) \end{equation}
αd=2k tanδ Np/m (TEM waves)
导体损耗为
αc=Rsηd Np/m
\begin{equation} \alpha_c = \frac{R_s}{\eta d}\ Np/m \end{equation}
αc=ηdRs Np/m
上式中RsR_sRs为表面电阻
Rs=Re{η}=Re{1+jσδs}=1σδs=ωμ2σ
\begin{equation} R_s = Re\{\eta\} = Re\{\frac{1 + j}{\sigma \delta_s}\} = \frac{1}{\sigma \delta_s} = \sqrt[]{\frac{\omega \mu}{2\sigma}} \end{equation}
Rs=Re{η}=Re{σδs1+j}=σδs1=2σωμ
2. TM波
对于平行平板波导中的TM波,截止波数为
kc=nπd, n=1,2,3,...
\begin{equation} k_c = \frac{n\pi}{d},\ \ n=1,2,3,... \end{equation}
kc=dnπ, n=1,2,3,...
所以相位因子为
β=k2−kc2=k2−(nπd)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{n \pi}{d})^2} \end{equation}
β=k2−kc2=k2−(dnπ)2
介质损耗为
αd=k2 tanδ2β Np/m (TE or TM waves)
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta}\ Np/m \ (TE\ or\ TM\ waves) \end{equation}
αd=2βk2 tanδ Np/m (TE or TM waves)
导体损耗为
αc=2ωϵRsβd=2kRsβηd Np/m
\begin{equation} \alpha_c = \frac{2 \omega \epsilon R_s}{\beta d} = \frac{2 k R_s}{\beta \eta d}\ Np/m \end{equation}
αc=βd2ωϵRs=βηd2kRs Np/m
3. TE波
对于平行平板波导中的TE波,截止波数为
kc=nπd, n=1,2,3,...
\begin{equation} k_c = \frac{n\pi}{d},\ \ n=1,2,3,... \end{equation}
kc=dnπ, n=1,2,3,...
所以相位因子为
β=k2−kc2=k2−(nπd)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{n \pi}{d})^2} \end{equation}
β=k2−kc2=k2−(dnπ)2
介质损耗为
αd=k2 tanδ2β Np/m (TE or TM waves)
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta}\ Np/m \ (TE\ or\ TM\ waves) \end{equation}
αd=2βk2 tanδ Np/m (TE or TM waves)
导体损耗为
αc=2kc2Rsωμβd=2kc2Rskβηd Np/m
\begin{equation} \alpha_c = \frac{2 k_c^2 R_s}{\omega \mu \beta d} = \frac{2 k_c^2 R_s}{k \beta \eta d}\ Np/m \end{equation}
αc=ωμβd2kc2Rs=kβηd2kc2Rs Np/m
三、矩形波导
1. TE模
对于矩形波导中的TE波,截止波数为
kc=(mπa)2+(nπb)2, m,n=0,1,2,3,... m,n不同时为零
\begin{equation} k_c = \sqrt[]{(\frac{m \pi}{a})^2 + (\frac{n \pi}{b})^2},\ \ m,n = 0,1,2,3,...\ m,n不同时为零 \end{equation}
kc=(amπ)2+(bnπ)2, m,n=0,1,2,3,... m,n不同时为零
所以相位因子为
β=k2−kc2=k2−(mπa)2−(nπb)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{m \pi}{a})^2 - (\frac{n \pi}{b})^2} \end{equation}
β=k2−kc2=k2−(amπ)2−(bnπ)2
介质损耗为
αd=k2 tanδ2β
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta} \end{equation}
αd=2βk2 tanδ
导体损耗为
αc=Rsa3bβkη(2bπ2+a2k2) Np/m (仅适用于TE10波)
\begin{equation} \alpha_c = \frac{R_s}{a^3 b \beta k \eta} (2b \pi^2 +a^2 k^2)\ Np/m\ (仅适用于TE_{10}波)\end{equation}
αc=a3bβkηRs(2bπ2+a2k2) Np/m (仅适用于TE10波)
2. TM波
对于矩形波导中的TM波,截止波数为
kc=(mπa)2+(nπb)2, m,n=0,1,2,3,... m,n不同时为零
\begin{equation} k_c = \sqrt[]{(\frac{m \pi}{a})^2 + (\frac{n \pi}{b})^2},\ \ m,n = 0,1,2,3,...\ m,n不同时为零 \end{equation}
kc=(amπ)2+(bnπ)2, m,n=0,1,2,3,... m,n不同时为零
所以相位因子为
β=k2−kc2=k2−(mπa)2−(nπb)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{m \pi}{a})^2 - (\frac{n \pi}{b})^2} \end{equation}
β=k2−kc2=k2−(amπ)2−(bnπ)2
介质损耗为
αd=k2 tanδ2β
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta} \end{equation}
αd=2βk2 tanδ
导体损耗为
αc=2Rskπ2kc2βη(n2b3+m2a3) Np/m
\begin{equation} \alpha_c = \frac{2 R_s k \pi^2}{k_c^2 \beta \eta}(\frac{n^2}{b^3} + \frac{m^2}{a^3})\ Np/m \end{equation}
αc=kc2βη2Rskπ2(b3n2+a3m2) Np/m
四、圆波导
1. TE模
对于矩形波导中的TE波,截止波数为
kcnm=pnm′a
\begin{equation} k_{c_{nm}} = \frac{p_{nm}'}{a} \end{equation}
kcnm=apnm′
其中pnm′p_{nm}'pnm′是Jn′J_n'Jn′的第mmm个根,即Jn′(pnm′)=0J_n'(p_{nm}')=0Jn′(pnm′)=0,Jn′J_n'Jn′是第一类贝塞尔函数Jn(x)J_n(x)Jn(x)的导数,pnm′p_{nm}'pnm′前几项的值如下表所示。
所以相位因子为
β=k2−kc2=k2−(pnm′a)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{p_{nm}'}{a})^2} \end{equation}
β=k2−kc2=k2−(apnm′)2
介质损耗为
αd=k2 tanδ2β
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta} \end{equation}
αd=2βk2 tanδ
导体损耗为
αc=Rsakηβ(kc2+k2p11′2−1) Np/m
\begin{equation} \alpha_c = \frac{R_s}{a k \eta \beta}(k_c^2 + \frac{k^2}{p_{11}'^2 - 1})\ Np/m \end{equation}
αc=akηβRs(kc2+p11′2−1k2) Np/m
2. TM波
对于矩形波导中的TM波,截止波数为
kcnm=pnma
\begin{equation} \begin{equation} k_{c_{nm}} = \frac{p_{nm}}{a} \end{equation} \end{equation}
kcnm=apnm
其中pnmp_{nm}pnm是第一类贝塞尔函数Jn(x)J_n(x)Jn(x)的第mmm个根,即Jn(pnm)=0J_n(p_{nm})=0Jn(pnm)=0,pnmp_{nm}pnm前几项的值如下表所示。
所以相位因子为
β=k2−kc2=k2−(pnma)2
\begin{equation} \beta = \sqrt[]{k^2 - k_c^2} = \sqrt[]{k^2 - (\frac{p_{nm}}{a})^2} \end{equation}
β=k2−kc2=k2−(apnm)2
介质损耗为
αd=k2 tanδ2β
\begin{equation} \alpha_d = \frac{k^2\ tan\delta}{2\beta} \end{equation}
αd=2βk2 tanδ
导体损耗为
αc=kRsηβa Np/m
\begin{equation} \alpha_c = \frac{k R_s}{\eta \beta a}\ Np/m \end{equation}
αc=ηβakRs Np/m
五、同轴线
1. 同轴线的传输线参数
假定同轴线内径为a,外径为b,两导体之间的填充材料具有复介电系数ϵ=ϵ′−jϵ′′\epsilon = \epsilon' - j\epsilon''ϵ=ϵ′−jϵ′′和磁导率μ=μ0μr\mu = \mu_0\mu_rμ=μ0μr,如下图所示,则有如下结果
L=μ2π ln b/a H/m
\begin{equation} L = \frac{\mu}{2\pi}\ ln\ b/a\ H/m \end{equation}
L=2πμ ln b/a H/m
C=2πϵ′ln b/a F/m
\begin{equation} C = \frac{2\pi \epsilon'}{ln\ b/a}\ F/m \end{equation}
C=ln b/a2πϵ′ F/m
R=Rs2π (1a+1b) Ω/m
\begin{equation} R = \frac{R_s}{2\pi}\ (\frac{1}{a} + \frac{1}{b})\ \Omega/m \end{equation}
R=2πRs (a1+b1) Ω/m
G=2πωϵ′′ln b/a S/m
\begin{equation} G = \frac{2\pi \omega \epsilon''}{ln\ b/a}\ S/m \end{equation}
G=ln b/a2πωϵ′′ S/m
2. TEM模
对于同轴线中的TEM波,有相位因子为
β=ω μϵ=ω LC
\begin{equation} \beta = \omega\ \sqrt[]{\mu \epsilon} = \omega\ \sqrt[]{LC} \end{equation}
β=ω μϵ=ω LC
介质损耗为
αd=ωϵ′′η2 Np/m
\begin{equation} \alpha_d = \frac{\omega \epsilon'' \eta}{2}\ Np/m \end{equation}
αd=2ωϵ′′η Np/m
导体损耗为
αc=Rs2η ln b/a (1a+1b) Np/m
\begin{equation} \alpha_c = \frac{R_s}{2 \eta\ ln\ b/a}\ (\frac{1}{a} + \frac{1}{b})\ Np/m \end{equation}
αc=2η ln b/aRs (a1+b1) Np/m
3. 高阶模
对于高阶模只给出一个近似解
kc=2a+b
\begin{equation} k_c = \frac{2}{a + b} \end{equation}
kc=a+b2
六、带状线
1. 带状线
将一个宽度为W的薄导体放在两块相距为b的宽导体接地平面之间的中部,两个接地平面之间的整个空间填充有电介质,如下图所示
2. TEM模
对于带状线中的TEM模,相位因子为
β=ω μ0ϵ0ϵr=k0 ϵr
\begin{equation} \beta = \omega\ \sqrt[]{\mu_0 \epsilon_0 \epsilon_r} = k_0\ \sqrt[]{\epsilon_r} \end{equation}
β=ω μ0ϵ0ϵr=k0 ϵr
介质损耗为
αd=k tanδ2 Np/m
\begin{equation} \alpha_d = \frac{k\ tan\delta}{2}\ Np/m \end{equation}
αd=2k tanδ Np/m
导体损耗请查阅相关资料。
七、微带线
1. 微带线
将宽度为WWW的导体印刷在厚度为ddd、相对介电常数为ϵr\epsilon_rϵr的薄接地电介质基片上,电力线如上图所示。微带线的严格场解是由混合TM−TETM-TETM−TE波组成的。然而在绝大多数实际应用中,电介质基片是非常薄的(d≪λd \ll \lambdad≪λ),因此其场是准TEM的。
对于相位系数有
β=k0 ϵe
\begin{equation} \beta = k_0\ \sqrt[]{\epsilon_e}\end{equation}
β=k0 ϵe
式中k0k_0k0为真空(空气)中的电磁波波数有k0=ω μ0ϵ0k_0 = \omega\ \sqrt[]{\mu_0 \epsilon_0}k0=ω μ0ϵ0,ϵe\epsilon_eϵe为微带线的有效介电系数,常满足以下关系
1<ϵe<ϵr
\begin{equation} 1 < \epsilon_e< \epsilon_r \end{equation}
1<ϵe<ϵr
并依赖于电介质基片的介电系数、基片厚度、导体宽度和频率等。
2. 有效介电系数和衰减的计算公式
微带线的有效介电系数可解释为一个均匀媒介的介电系数,
ϵe=ϵr+12+ϵr−1211+12d/W
\begin{equation} \epsilon_e = \frac{\epsilon_r+1}{2} + \frac{\epsilon_r - 1}{2} \frac{1}{\sqrt[]{1+12d/W}} \end{equation}
ϵe=2ϵr+1+2ϵr−11+12d/W1
这个均匀地介质取代了微带线的空气和电介质区域,如下图所示
介质损耗为
αd=k0ϵr(ϵe−1) tanδ2ϵe(ϵr−1) Np/m
\begin{equation} \alpha_d = \frac{k_0 \epsilon_r(\epsilon_e - 1) \ tan\delta}{2\sqrt[]{\epsilon_e}(\epsilon_r - 1)}\ Np/m \end{equation}
αd=2ϵe(ϵr−1)k0ϵr(ϵe−1) tanδ Np/m
导体损耗为
αc=RsZ0W Np/m
\begin{equation} \alpha_c = \frac{R_s}{Z_0 W}\ Np/m \end{equation}
αc=Z0WRs Np/m
式中Z0Z_0Z0为特征阻抗,对于微带线请查阅相关文献。
3. 频率依赖效应和高阶模
一种常见的介电系数依赖模型为
ϵe(f)=ϵr−ϵr−ϵe(0)1+G(f)
\begin{equation} \epsilon_e(f) = \epsilon_r - \frac{\epsilon_r - \epsilon_e(0)}{1 + G(f)} \end{equation}
ϵe(f)=ϵr−1+G(f)ϵr−ϵe(0)
式中ϵe(f)\epsilon_e(f)ϵe(f)表示与频率相关的有效介电系数,ϵr\epsilon_rϵr是基板的相对介电系数,ϵe(0)\epsilon_e(0)ϵe(0)是直流时微带线的有效介电系数,它由式(52)给出。函数G(f)可取各种形式,一种可行的方式如下
G(f)=(0.6+0.009Z0)(8πdfZ0)2
\begin{equation} G(f) = (0.6 + 0.009 Z_0) (\frac{8 \pi d f}{Z_0})^2 \end{equation}
G(f)=(0.6+0.009Z0)(Z08πdf)2
式中Z0Z_0Z0的单位是ohms,fff的单位是GHz,ddd的单位是cm。