torch常用操作—— torch.nn.functional.pad

本文详细介绍了PyTorch中nn.functional.pad函数的使用方法,该函数用于填充tensor,支持2D和3D填充。文章通过多个代码示例展示了如何指定填充方向和数值,帮助读者理解填充操作的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.functional.pad

作用:填充tensor
目前为止,只支持2d和3d填充
用法:

 torch.nn.functional.pad(input, pad, mode='constant', value=0)[source]

input需要填充的tensor
pad决定填充的方向
以下面的例子观察可知:
pad为tuple (pad_l, pad_r, pad_t, pad_b )
其中四个元素的位置代表了填充的位置,大小为填充的行数,如果需要填充指定数值的话,可以指定values为你想要的数据

code1:

import torch
import torch.nn.functional as F
a = torch.rand(1, 3, 3)
print(a)
b = F.pad(a, [0, 0, 0, 1])
print(b)

output:
在这里插入图片描述
code2:

import torch
import torch.nn.functional as F
a = torch.rand(1, 3, 3)
print(a)
b = F.pad(a, [0, 0, 1, 0])
print(b)

output:
在这里插入图片描述
code3:

import torch
import torch.nn.functional as F
a = torch.rand(1, 3, 3)
print(a)
b = F.pad(a, [0, 1, 0, 0])
print(b)

output:
在这里插入图片描述
code4:

import torch
import torch.nn.functional as F
a = torch.rand(1, 3, 3)
print(a)
b = F.pad(a, [1, 0, 0, 0])
print(b)

output:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值