OpenCV目标识别

一 图像轮廓

具有相同颜色或强度的连续点的曲线。
在这里插入图片描述
图像轮廓的作用
可以用于图像分析
物体的识别与检测

注意

为了检测的准确性,需要先对图像进行二值化或Canny操作。
画轮廓时会修改输入的图像。

轮廓查找的API

findContours(img,mode,ApproximationMode,...)
两个返回值,contours和hierarchy
mode
RETR_EXTERNAL=0,表示只检测外轮廓。
RETR_LIST=1,检测的轮廓不建立等级关系
RETR_CCOMP=2,每层最多两级
RETR_TREE=3,桉树形存储轮廓

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ApproximationMode
CHAIN_APPROX_NONE,保存所有轮廓上的点
CHAIN_APPROX_SIMPLE,只保存角点
import cv2
import numpy as np

img=cv2.imread('./9615.jpg')
print(img.shape)

#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)

#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
print(contours)
cv2.imshow('img',img)
cv2.waitKey(0)

二 绘制轮廓

如何绘制轮廓

drawContours(img,contours,contourIdx,color,thickness...)
contourIdx,-1表示绘制所有轮廓
color,颜色(0,0,255)
thickness,线宽,-1是全部填充
import cv2
import numpy as np

img=cv2.imread('./9615.jpg')
print(img.shape)

#转变成单通道
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
print(gray.shape)

#二值化
ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

#轮廓查找
contours,hierarchy=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
print(contours)

#绘制轮廓
img1=cv2.drawContours(img,contours,0,(0,0,255),5)

#cv2.imshow('img',img)
cv2.imshow('img1',img1)
cv2.waitKey(0)

三 轮廓的面积和周长

1 轮廓的面积

conto
OpenCV中的目标识别是一个涉及广泛且快速发展的领域。在目标识别中,人脸检测是一个常见的任务。OpenCV中的人脸检测器使用了基于分类器boosting的技术,并通过成千上万个物体的训练图像来训练新的分类器,以实现最优的检测算法。因此,对于人脸等基本刚性物体的识别任务,Haar分类器是一个有用的工具。\[1\] 在使用OpenCV进行目标识别时,可以按照以下步骤进行操作: 1. 创建SVM实例,并设置SVM的参数,如类型、Gamma、C和核的类型等。\[2\] 2. 对每幅图像提取特征,例如使用SIFT特征,并使用聚类方法(如k-means)对特征进行聚类,得到码本(dictionary)。 3. 在每幅图像中统计特征点在码本上的频数分布,得到图像的BOW向量,作为图像的特征表示。\[3\] 对于汽车检测等没有现成分类器的任务,需要训练一个目标检测器。可以使用HOG(Histogram of Oriented Gradients)特征,并设置一个适合的SVM检测器,如hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())。\[3\] 总之,OpenCV提供了丰富的工具和技术来进行目标识别,可以根据具体的任务需求选择适合的方法和算法。 #### 引用[.reference_title] - *1* [OpenCV之目标检测](https://blog.csdn.net/qq_46338507/article/details/118108528)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [opencv目标检测与识别(传统的目标检测方法)](https://edu.csdn.net/skill/opencv/opencv-92964722395c4b9f989694211b07df44)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钢铁男儿

赛博功德充值,BUG退散

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值