solr-cloud集群的搭建

该博客介绍了Solr集群的部署与启动流程。首先进行准备工作,包括上传并解压部署完solr的tomcat和solrhome,复制实例和配置文件,修改web.xml和端口。接着配置集群,修改catalina.sh文件,进行SolrCloud配置,上传配置文件到zookeeper集群。最后启动4台tomcat完成部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,准备工作

上传已经部署完solr的tomcat并解压

mkdir /usr/local/solr-cloud

cd /usr/local/solr-cloud/

rz  上传tomcat的压缩包

unzip apache-tomcat-7.0.47.zip

 

复制4份tomcat实例

cp -r apache-tomcat-7.0.47 /usr/local/solr-cloud/tomcat-1

cp -r apache-tomcat-7.0.47 /usr/local/solr-cloud/tomcat-2

cp -r apache-tomcat-7.0.47 /usr/local/solr-cloud/tomcat-3

cp -r apache-tomcat-7.0.47 /usr/local/solr-cloud/tomcat-4

上传solrhome并解压

mkdir /usr/local/solrhomes

cd /usr/local/solrhomes/

rz 上传solrhome的压缩包

unzip solrhome.zip

复制4份solrhome

cp -r solrhome /usr/local/solrhomes/solrhome-1

cp -r solrhome /usr/local/solrhomes/solrhome-2

cp -r solrhome /usr/local/solrhomes/solrhome-3

cp -r solrhome /usr/local/solrhomes/solrhome-4

修改每个solr的web.xml,关联它自己的solrhome

vi /usr/local/solr-cloud/tomcat-1/webapps/solr/WEB-INF/web.xml

修改为:/usr/local/solrhomes/solrhome-1

 

vi /usr/local/solr-cloud/tomcat-2/webapps/solr/WEB-INF/web.xml

修改为:/usr/local/solrhomes/solrhome-2

 

vi /usr/local/solr-cloud/tomcat-3/webapps/solr/WEB-INF/web.xml

修改为:/usr/local/solrhomes/solrhome-3

 

vi /usr/local/solr-cloud/tomcat-4/webapps/solr/WEB-INF/web.xml

修改为:/usr/local/solrhomes/solrhome-4

 

修改4个tomcat的端口(端口不能冲突)

vi /usr/local/solr-cloud/tomcat-1/conf/server.xml

修改三个端口:8185 8180 8109

 

vi /usr/local/solr-cloud/tomcat-2/conf/server.xml

修改三个端口:8285 8280 8209

 

vi /usr/local/solr-cloud/tomcat-3/conf/server.xml

修改三个端口:8385 8380 8309

 

vi /usr/local/solr-cloud/tomcat-4/conf/server.xml

修改三个端口:8485 8480 8409

 

 

2、配置集群

修改每个tomcat的catalina.sh文件,让tomcat启动时找到zookeeper集群

vi /usr/local/solr-cloud/tomcat-1/bin/catalina.sh

在236行添加如下内容:

JAVA_OPTS="-DzkHost=192.168.127.135:2181,192.168.127.135:2182,192.168.127.135:2183"

 

vi /usr/local/solr-cloud/tomcat-2/bin/catalina.sh

在236行添加如下内容:

JAVA_OPTS="-DzkHost=192.168.127.135:2181,192.168.127.135:2182,192.168.127.135:2183"

 

vi /usr/local/solr-cloud/tomcat-3/bin/catalina.sh

在236行添加如下内容:

JAVA_OPTS="-DzkHost=192.168.127.135:2181,192.168.127.135:2182,192.168.127.135:2183"

 

vi /usr/local/solr-cloud/tomcat-4/bin/catalina.sh

在236行添加如下内容:

JAVA_OPTS="-DzkHost=192.168.127.135:2181,192.168.127.135:2182,192.168.127.135:2183"

SolrCloud的配置,让solrhome知道自己对应的ip和端口号

修改solrhome-1

vi /usr/local/solrhomes/solrhome-1/solr.xml

<str name="host">192.168.127.135</str>

<int name="hostPort">8180</int>

 

修改solrhome-2

vi /usr/local/solrhomes/solrhome-2/solr.xml

<str name="host">192.168.127.135</str>

<int name="hostPort">8280</int>

 

修改solrhome-3

vi /usr/local/solrhomes/solrhome-3/solr.xml

<str name="host">192.168.127.135</str>

<int name="hostPort">8380</int>

 

修改solrhome-4

vi /usr/local/solrhomes/solrhome-4/solr.xml

<str name="host">192.168.127.135</str>

<int name="hostPort">8480</int>

 

上传solrhome下的配置文件,让zookeeper集群统一管理配置文件

上传solr的安装包

cd /usr/local/solr-cloud/

rz 上传solr的tar.gz的安装包

tar -zxvf solr-4.10.3.tgz.tgz  解压solr的安装包

cd /usr/local/solr-cloud/solr-4.10.3/example/scripts/cloud-scripts/

 

执行如下的上传脚本:

./zkcli.sh -zkhost 192.168.127.135:2181,192.168.127.135:2182,192.168.127.135:2183 -cmd upconfig -confdir /usr/local/solrhomes/solrhome-1/collection1/conf -confname myconf

3、启动集群

启动4台tomcat

首先需要赋予执行的权限:

chmod 755 -R /usr/local/solr-cloud/tomcat-1/

cd /usr/local/solr-cloud/tomcat-1/bin/

./startup.sh

 

 

chmod 755 -R /usr/local/solr-cloud/tomcat-2/

cd /usr/local/solr-cloud/tomcat-2/bin/

./startup.sh

 

 

chmod 755 -R /usr/local/solr-cloud/tomcat-3/

cd /usr/local/solr-cloud/tomcat-3/bin/

./startup.sh

 

 

chmod 755 -R /usr/local/solr-cloud/tomcat-4/

cd /usr/local/solr-cloud/tomcat-4/bin/

./startup.sh

 

访问如下地址:http://192.168.127.135:8180/solr/

此时成功的你

 

 

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值