Deepseek-V3如何通过蒸馏技术从R1提取推理能力?
前言
在读Deepseek-V3 paper的时候,introduce 中提到“we distill the reasoning capability from the DeepSeek-R1 series of models”,很好奇是怎么从R1中提取推理能力的,所以问了问大模型,你是怎么提取推理能力的呢?回答我说是“特别是通过蒸馏技术”,那什么是“蒸馏技术”呢,怎么通过蒸馏技术来提取推理能力呢?以下是我们的沟通后整理形成的文档。
1.解释什么是蒸馏技术(Knowledge Distillation)?
蒸馏技术是一种模型压缩和知识迁移的方法,核心思想是让一个小模型(学生模型)学习一个大模型(教师模型)的能力,从而提升自身的性能。
• 传统的训练方法是直接用数据训练模型,而蒸馏技术则是让学生模型模仿教师模型的行为。
• 具体来说,教师模型的输出不仅包括最终的预测结果,还包括中间的特征信息、概率分布等,这些信息能帮助学生模型学习更细腻的知识。
2. 怎么通过蒸馏技术提取推理能力?
在 DeepSeek-V3 的训练过程中,如果它要从 DeepSeek-R1 提取推理能力,可能会采用以下蒸馏方法:
(1) 直接输出蒸馏(Logit Distillation)
让 DeepSeek-V3 模拟 DeepSeek-R1 在推理任务上的输出:
• 给 DeepSeek-R1 提供数学题、逻辑推理题,它会输出一系列答案和思考过程。
• DeepSeek-V3 不直接用标准答案来学习,而是学习 DeepSeek-R1 的输出概率分布,使它的回答方式尽量接近 R1。
(2) 思维链蒸馏(Chain-of-Thought Distillation)
• DeepSeek-R1 可能已经具备强大的推理能力,它在解数学题时会有详细的思考过程(例如分步计算)。
• 在训练 DeepSeek-V3 时,不只是让它学习最终答案,而是让它模仿 R1 的思维过程,使 V3 也能按照类似的推理逻辑思考问题。
(3) 特征表示蒸馏(Feature-based Distillation)
• 除了输出结果,还可以让 V3 学习 R1 内部的隐藏层表示(隐藏状态、注意力分布等)。
• 这意味着,V3 不仅学到了“结论”,还学到了“如何得出这个结论”。
3. 为什么要用蒸馏技术提取推理能力?
• 提升小模型的性能:DeepSeek-V3 可能是一个更加高效的模型,通过蒸馏,它可以在不增加计算量的情况下,吸收 DeepSeek-R1 的推理能力。
• 减少训练成本:如果直接让 V3 自己学会推理能力,可能需要大量的高质量数据和昂贵的计算资源,而通过蒸馏,它可以快速继承 R1 的能力。
蒸馏技术本质上是让一个小模型(学生)学习一个大模型(老师)的能力,而不同的蒸馏方式决定了学生如何学习老师的知识。我们来详细解释 Logit 蒸馏、思维链蒸馏、特征表示蒸馏,并举例说明。
4.蒸馏技术的通俗解释
- Logit 蒸馏(Logit Distillation)——学习老师的“答案倾向”
通俗理解:让学生模型不仅学会最终答案,还要学会老师对不同答案的“信心程度”。
举例
假设 DeepSeek-R1 看到一个问题:
**问题:**2 + 2 = ?
DeepSeek-R1(老师)的输出概率:
• 4(90%)(最可能的答案)
• 3(5%)
• 5(3%)
• 6(2%)
标准的训练方式只会让学生模型 DeepSeek-V3 学习 “2 + 2 = 4” 这个唯一正确答案。但 Logit 蒸馏不止让它学答案,还要让它模仿老师对答案的信心程度,即让 V3 也输出类似的概率分布:
DeepSeek-V3 经过 Logit 蒸馏后的输出概率:
• 4(88%)(最可能的答案)
• 3(6%)
• 5(4%)
• 6(2%)
这样,V3 不仅知道 2+2=4,还学习了 “3 可能是计算错误,5 和 6 可能是粗心导致的错误” 这样的隐性信息。
✅ 好处:
• 让学生模型理解答案之间的关系,而不是死记硬背。
• 在更复杂的任务(如多选、开放性问答)中,更容易学习老师的“决策方式”。
- 思维链蒸馏(Chain-of-Thought Distillation)——学习老师的“思考过程”
通俗理解:学生不只是学习答案,还要学习老师的推理步骤,就像数学考试中“写出详细解题过程”。
举例
**问题:**一个苹果 3 元,一个橙子 5 元,买 2 个苹果和 1 个橙子要多少钱?
DeepSeek-R1(老师)回答:
1. 一个苹果 3 元,两个苹果 = 3 × 2 = 6 元。
2. 一个橙子 5 元。
3. 总价 = 6 + 5 = 11 元。
标准的训练方式可能只让 DeepSeek-V3 学到“正确答案是 11”,但如果使用思维链蒸馏,V3 还会学到完整的计算步骤,这样它在遇到更复杂的问题时,也能按相同的方式推理,而不是靠“猜答案”。
✅ 好处:
• 提高推理能力,让模型可以解决更复杂的数学、逻辑推理问题。
• 增强可解释性,输出的回答更清晰,而不是直接给个答案。
- 特征表示蒸馏(Feature-based Distillation)——学习老师“思考时的脑电波”
通俗理解:不仅学习老师的答案,还学习老师在思考时“脑子里是怎么想的”。
举例
假设 DeepSeek-R1 在回答问题时,会关注不同的关键点,比如:
• “苹果 3 元” 这个数字很重要,要重点关注。
• “买 2 个苹果” 说明了数量,也需要重点关注。
DeepSeek-R1 在处理这个问题时,内部的隐藏状态(Hidden States) 会对这些信息有不同的“激活程度”。而特征表示蒸馏就是让 DeepSeek-V3 也学习这些隐藏特征,让它在回答问题时关注同样的重点信息。
✅ 好处:
• 让学生模型的内部思维方式更接近老师,而不仅仅是模仿输出。
• 在复杂任务(比如阅读理解、逻辑分析)中,帮助模型更好地理解文本。