大模型llama结构技术点分享;transformer模型常见知识点nlp面经

transformer stanford学习
https://web.stanford.edu/class/cs25/recordings/
在这里插入图片描述

1、大模型llama3技术点

参考:https://www.zhihu.com/question/662354435/answer/3572364267

Llama1-3,数据tokens从1-2T到15T;使用了MHA(GQA缓存);上下文长度从2-4-8K;应用了强化学习对其。

  • 1、pretraining((1) 初始预训练,(2) 长上下文预训练,以及 (3)
    退火(Annealing))+posttraing(SFT+DPO)

  • 2、合成数据应用

  • 3、Norm函数:RMSNorm,Norm结构:Pre-Norm,Self Attention: Grouped Query Attention(GQA) ,Position编码:ROPE,FFN结构:SwiGLU

Norm函数:RMSNorm
Norm结构:Pre-Norm
Self Attention: Grouped Query Attention(GQA)Position编码:ROPE
FFN结构:SwiGLU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值