pytorch kaggle猫狗分类数据训练

这篇博客探讨了使用PyTorch进行Kaggle猫狗分类数据集的训练过程,包括图片数据的处理、增强、加载和批处理技术,以及快速构建训练模型的语句。同时,文中还介绍了如何在批训练中监测loss和准确率的方法,如item和max等指标的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

难点:
1.图片数据处理问题,增强,加载及批处理
2.训练模型语句快速搭建
3.批训练查看loss和准确率方法,item,max等

import torch
import torch.nn as nn
from torchvision import transforms,datasets
import torch.nn.functional as F
import numpy
from torch.autograd import Variable

data_transform = transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\kaggle\train')
# # dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\项目\分类')
#
# # cat文件夹的图片对应label 0,dog对应1
# print(dataset.class_to_idx)

train_dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\kaggle\train', transform=data_transform)
test_dataset = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值