难点:
1.图片数据处理问题,增强,加载及批处理
2.训练模型语句快速搭建
3.批训练查看loss和准确率方法,item,max等
import torch
import torch.nn as nn
from torchvision import transforms,datasets
import torch.nn.functional as F
import numpy
from torch.autograd import Variable
data_transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\kaggle\train')
# # dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\项目\分类')
#
# # cat文件夹的图片对应label 0,dog对应1
# print(dataset.class_to_idx)
train_dataset = datasets.ImageFolder(root=r'C:\Users\Lavector\Desktop\kaggle\train', transform=data_transform)
test_dataset =