简介:本文深入探讨了Kubernetes(K8s)应用部署和调度的核心功能,详细介绍了各种调度策略的测试用例设计。从资源需求匹配到故障恢复和自定义调度器,全面覆盖了确保Kubernetes高效、稳定调度容器化应用的各个方面。
1. Kubernetes之应用部署调度策略测试用例
随着云原生应用的普及,Kubernetes作为容器编排平台的核心技术之一,其应用部署调度策略的测试成为了保障应用性能与稳定性的重要步骤。本章将为读者介绍如何设计有效的测试用例来验证Kubernetes中应用部署调度策略的正确性和高效性。
1.1 测试用例设计原则
测试用例的设计需遵循完整性、有效性与可重复性三个核心原则。首先,用例应覆盖所有可能的调度场景,包括正常、异常以及边缘情况。其次,测试应验证调度策略的输出是否符合预期结果。最后,每个测试用例都应能被独立执行多次以确保一致性。
1.2 测试用例执行步骤
在测试用例执行之前,应确保测试环境配置正确,包括集群设置、资源限制和网络配置等。具体步骤如下:
- 配置Kubernetes集群环境,包括Master和Worker节点。
- 编写测试用例脚本,涉及调度策略的声明、资源请求及限制设置等。
- 执行测试用例,并监控调度过程和Pod状态。
- 收集测试结果,并进行分析验证。
1.3 测试用例分析
测试结果的分析通常涉及对比预期结果与实际结果,以及分析日志文件、监控指标和系统性能数据。如果发现偏差,需要进一步调整配置或策略,直至测试通过。
通过本章的介绍,读者应能够掌握Kubernetes应用部署调度策略测试的基本流程与关键点。后续章节将深入探讨Kubernetes调度机制的细节及性能优化方法。
2. Kubernetes调度过程概述
2.1 Kubernetes调度机制
2.1.1 调度器的作用和工作原理
Kubernetes 调度器是集群的核心组件之一,负责将 Pod 调度到合适的节点上运行。调度器的工作原理基于一系列的预定义规则和算法,它通过监听 API 服务器上的 Pod 创建事件来执行任务。当一个新的 Pod 被创建时,调度器会根据它的属性和集群的状态,为 Pod 选择一个最合适的节点。这一过程主要依赖于以下几个方面:
- 过滤(Filtering) :首先,调度器会列出所有节点,然后根据 Pod 的要求(比如资源需求、节点选择器、污点容忍等)过滤掉不符合条件的节点,这个步骤被称为预选(Predicates)。
- 打分(Scoring) :接着,调度器会对剩余的节点进行打分,决定哪一个节点更适合这个 Pod。这个步骤被称为优先级排序(Priorities)。
- 绑定(Binding) :最后,调度器会将 Pod 绑定到得分最高的节点上。
2.1.2 调度过程的关键步骤
调度过程的关键步骤可以分为以下几个阶段:
- 调度决策 :调度器的决策机制需要满足所有资源请求,并尽可能优化集群资源利用率。这需要调度器能够理解整个集群的资源情况,并根据 Pod 的资源请求和限制进行决策。
- 系统预选 :系统预选阶段会排除那些不符合基本调度要求的节点。例如,如果一个 Pod 需要 GPU,那么没有 GPU 的节点就会在这一阶段被排除。
- 优先级排序 :在优先级排序阶段,调度器会对可用的节点进行打分,选择最合适的节点。打分函数根据各种规则(如资源利用率、节点标签、用户定义的优先级等)来决定最终得分。
2.1.3 调度器组件和工作流程
调度器由两个主要组件构成:
- 调度器主循环 :这是调度器的核心,负责监听新创建的 Pod,检查它们是否已绑定到节点上,如果没有,调度器会尝试为其找到一个合适的节点。
- 调度器算法 :这一算法负责实际的节点选择过程,它依赖于一组扩展性很强的插件系统,允许自定义调度逻辑。
工作流程大致可以概括为以下步骤:
- 调度器监听到 API 服务器上一个未被调度的 Pod。
- 调度器为 Pod 获取集群中所有可用节点的列表。
- 调度器根据一系列的过滤和打分规则缩小节点列表范围。
- 调度器将 Pod 绑定到得分最高的节点上。
- API 服务器接收到调度器的绑定请求,并更新 Pod 的信息。
2.2 调度器与Pod的交互
2.2.1 Pod的调度请求
每个 Pod 在创建时都会通过定义的 spec 字段向调度器发出调度请求。这个请求包含了 Pod 的资源需求、特定的运行环境要求(比如节点选择器)、以及可能的优先级或亲和性/反亲和性需求。这些信息是调度器进行决策的关键依据。Pod 的调度请求可以通过以下几种方式定义:
- CPU 和内存需求 :通过
spec.containers[].resources.requests
来声明容器的最小资源需求。 - 节点选择器 :通过
spec.nodeSelector
来指定 Pod 可以被调度到的节点标签。 - 优先级 :通过
spec.priority
字段来设置 Pod 的优先级,优先级越高,调度的优先级也越高。
2.2.2 调度器的选择策略
调度器会根据以下几个策略来决定 Pod 的调度位置:
- 资源需求 :Pod 的资源需求是决定其调度的首要因素。调度器会先确认节点有足够的资源来满足 Pod 的需求。
- 亲和性与反亲和性 :这些规则决定了 Pod 更倾向于在哪些节点上运行,或者必须避免哪些节点。
- 节点相关性 :调度器还会考虑一些特殊的节点相关性,比如污点(taints)和容忍度(tolerations),以及Pod的亲和性(affinity)和反亲和性(anti-affinity)。
- 负载均衡 :理想情况下,调度器也会尽量做到负载均衡,避免某个节点资源紧张,而其他节点资源闲置的情况。
2.3 调度的限制和约束条件
2.3.1 硬件资源限制
Kubernetes 集群内的节点可能有各种硬件资源限制,调度器在调度 Pod 时必须考虑这些因素。比如:
- CPU和内存限制 :调度器需要确保节点上还有足够的 CPU 和内存资源来满足新 Pod 的请求。
- 存储限制 :当 Pod 请求特定类型的存储时(如 SSD 或特定的持久化存储),只有拥有这些资源的节点才能被选中。
2.3.2 软件和安全约束
除了硬件资源,软件和安全约束同样是调度过程中需要考虑的重要因素。比如:
- 操作系统类型 :某些 Pod 可能要求运行在特定类型的操作系统上,调度器需要根据节点的实际操作系统来决定是否允许部署。
- 安全策略 :集群安全策略可能限制特定类型的 Pod 只能运行在特定的节点上,比如运行着高安全要求应用的 Pod。
调度器在处理这些约束条件时,会依赖于节点的标签、污点、Pod 的亲和性规则等机制,确保所有的约束条件都得到满足。
3. 资源需求匹配测试
3.1 资源请求与限制
3.1.1 定义资源请求与限制
在 Kubernetes 中,Pod 资源的请求与限制是一个非常核心的概念。通过设置 Pod 的资源请求,我们告诉 Kubernetes 运行该 Pod 所需的最小资源量,而设置资源限制则定义了 Pod 所能使用的最大资源量。这有助于 Kubernetes 进行更加高效和合理的资源分配,从而提升集群的运行效率和资源利用率。
例如,定义一个 Pod 的 CPU 请求为 100m
(即 100 millicores,约等于十分之一核),这意味着该 Pod 在运行时至少需要 100 millicores 的 CPU 资源。而将内存的请求设置为 256Mi
(即 256 MiB),则代表 Pod 至少需要 256 MiB 的内存空间。
在限制方面,如果将 CPU 的限制设置为 500m
,那么即使集群有足够的 CPU 资源,该 Pod 也只能使用到 500 millicores 的 CPU 资源,这有利于避免资源过度使用,防止其他 Pod 因资源紧张而受到影响。
3.1.2 测试资源的合理分配
为了验证资源请求和限制的有效性,我们可以通过编写一系列的测试用例来进行测试。这些测试用例将覆盖不同资源配比的场景,包括资源富裕时的情况,以及资源紧张时的场景。
apiVersion: v1
kind: Pod
metadata:
name: resource-demo
spec:
containers:
- name: resource-demo-container
image: nginx
resources:
requests:
cpu: "100m"
memory: "256Mi"
limits:
cpu: "500m"
memory: "512Mi"
例如,如上所示的资源请求与限制定义,在集群资源充足时,我们预期 Pod 可以顺利启动并运行。但在资源紧张时,Kubernetes 调度器将根据资源请求和限制来决定是否调度该 Pod,从而保证集群的稳定性。
3.2 资源竞争与饥饿问题
3.2.1 竞争资源下的调度表现
当多个 Pod 同时请求有限的资源时,就可能发生资源竞争。了解在资源竞争情况下的调度表现对于优化资源使用、保证服务可用性非常重要。
为了模拟资源竞争,我们可以创建多个请求较高资源的 Pod,观察它们是如何被调度到不同的节点上的,以及 Kubernetes 如何进行资源分配。
apiVersion: v1
kind: Pod
metadata:
name: resource-heavy-pod
spec:
containers:
- name: resource-heavy-container
image: redis
resources:
requests:
cpu: "1"
memory: "1Gi"
limits:
cpu: "1"
memory: "1Gi"
在这个示例中,我们创建了一个资源需求较大的 Pod,它在资源紧张的环境下,可能会导致调度延迟或是因为资源不足而无法调度。
3.2.2 避免资源饥饿的策略
为了避免资源饥饿问题,Kubernetes 提供了多种机制,如资源配额(Resource Quotas)、限制范围(Limit Ranges)和 QoS 等。正确使用这些机制可以有效缓解资源竞争带来的影响。
- 资源配额 可以限制命名空间下的资源总量,包括 CPU、内存等。
- 限制范围 可以为命名空间内的 Pod 设置默认的资源请求和限制。
- QoS(Quality of Service) 则根据 Pod 的资源请求和限制,将 Pod 分为 BestEffort、Burstable 和 Guaranteed 三类,其中 Guaranteed 类别的 Pod 在资源紧张时优先级最高。
通过这些策略,可以在一定程度上避免资源饥饿问题的发生,保证业务的连续性和稳定性。
4. 节点亲和性和反亲和性测试
节点亲和性和反亲和性是 Kubernetes 调度策略中用于控制 Pod 分配到特定节点的重要机制。通过这种方式,管理员可以确保 Pod 根据业务需求被调度到合适的节点上,同时避免某些敏感 Pod 被放置在不安全或不适宜的节点上。
4.1 亲和性调度规则
4.1.1 节点选择器的使用
节点选择器通过标签(Label)和选择器(Selector)的方式,允许用户将特定的 Pod 调度到标记了特定键值对的节点上。这是一种传统的亲和性调度方式,其使用示例如下:
apiVersion: v1
kind: Pod
metadata:
name: nginx-pod
spec:
containers:
- name: nginx-container
image: nginx
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: purpose
operator: In
values:
- webserver
此 Pod 将只能调度到标签为 purpose=webserver
的节点上。若使用 IgnoredDuringExecution
,则当节点的标签发生变化时,已部署的 Pod 不会被从节点上驱逐。
4.1.2 亲和性规则的编写与测试
亲和性规则主要分为 requiredDuringSchedulingIgnoredDuringExecution
和 preferredDuringSchedulingIgnoredDuringExecution
两种类型。第一种类型是必须满足的条件,如果找不到满足条件的节点,则 Pod 调度会失败;第二种类型则是倾向性条件,调度器会尽量满足这些条件,但不会强制执行。
以下是一个示例,展示了如何编写一个倾向性节点亲和性规则:
apiVersion: v1
kind: Pod
metadata:
name: nginx-pod-preferred
spec:
containers:
- name: nginx-container
image: nginx
affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
preference:
matchExpressions:
- key: purpose
operator: In
values:
- cache
在这个例子中,调度器会偏好将 Pod 调度到标签为 purpose=cache
的节点上,但如果没有任何这样的节点,Pod 仍然可以被调度到其他节点。
测试亲和性规则
编写好亲和性规则后,需要进行验证测试,以确保它们按预期工作。以下是测试步骤:
- 为集群中的某些节点添加相应的标签。
- 部署带有亲和性规则的 Pod。
- 观察并确认 Pod 是否成功调度到预期的节点上。
- 修改节点标签,移除或改变与亲和性规则相关的标签,检查调度器是否按照规则处理。
4.2 反亲和性调度规则
反亲和性规则与亲和性规则相反,它确保 Pod 不会被调度到具有特定标签的节点上。这对于避免资源竞争或满足特定的业务要求非常有用。
4.2.1 反亲和性场景设定
反亲和性场景通常用于防止多个应用实例在同一节点上运行,从而避免潜在的资源竞争。例如,当两个不同应用可能使用相同的端口时。
以下是一个反亲和性规则的配置示例:
apiVersion: v1
kind: Pod
metadata:
name: redis-cache
spec:
containers:
- name: redis-container
image: redis
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- redis-cache
topologyKey: kubernetes.io/hostname
在这个配置中, redis-cache
Pod 不会被调度到已有标签为 app=redis-cache
的 Pod 所在的节点上。
4.2.2 规则执行的有效性验证
验证反亲和性规则的有效性与验证亲和性规则类似。下面是测试步骤:
- 在集群中部署多个已标记的 Pod。
- 部署带有反亲和性规则的 Pod。
- 观察调度器是否遵守反亲和性规则,保证新 Pod 不会与标记的 Pod 同处于一个节点。
- 修改集群中节点的标签,以测试调度器对动态变化的响应能力。
测试反亲和性规则的代码块与执行分析
kubectl label nodes node-1 app=redis-cache
kubectl run redis-cache --image=redis --restart=Never
# 验证是否部署到新节点
kubectl get pods -o wide
在上述步骤中,首先为名为 node-1
的节点添加了 app=redis-cache
标签。然后创建了一个名为 redis-cache
的 Pod,其具有反亲和性规则,要求不与标记了 app=redis-cache
的节点上运行的 Pod 同处一地。最后,执行 kubectl get pods -o wide
命令来确认 redis-cache
Pod 被调度到了哪个节点。
Node | Running Pods | New Pod |
---|---|---|
node-1 | redis-cache | (预期)调度到 node-2 |
node-2 | (无) | redis-cache |
通过检查 Pod 的实际运行位置,我们可以验证反亲和性规则是否生效。
测试验证结果表格
测试编号 | 场景描述 | 规则类型 | 预期行为 | 实际结果 | 验证状态 |
---|---|---|---|---|---|
1 | 亲和性规则测试 | required | 只能调度到具有 purpose=webserver 的节点上 | 待验证 | 待更新 |
2 | 反亲和性规则测试 | required | 不调度到具有 app=redis-cache 的节点上 | 待验证 | 待更新 |
在测试执行过程中,通过监控工具或直接观察集群状态,我们可以更新验证状态,确保规则按预期工作。
通过本章节的测试案例,我们可以看到如何通过编写和验证亲和性与反亲和性规则来影响 Kubernetes 的调度行为,以满足复杂的业务需求。
5. 节点选择器应用测试
5.1 标签与选择器的配置
在Kubernetes中,节点选择器(NodeSelector)是一种简单的调度策略,它允许用户根据节点上的标签(Label)来调度Pod到特定的节点。使用节点选择器可以将Pod部署到具有特定硬件配置或功能的节点上。接下来,我们将深入讨论节点选择器的配置方法以及标签与选择器的匹配逻辑。
5.1.1 节点标签的添加与管理
节点标签是Kubernetes中用于标识节点属性的键值对。它们可以用来表示硬件信息、配置或任何与业务需求相关的信息。为了使用节点选择器,首先需要在节点上添加标签。
添加节点标签的步骤如下:
- 首先,获取集群中节点的列表:
kubectl get nodes
- 选择一个节点,并为其添加标签。例如,假设我们有一个节点名为
node-1
,我们想添加一个标签rack=1
来表示该节点位于机架1:
kubectl label node node-1 rack=1
这条命令会将 rack=1
这个标签应用到 node-1
节点上。如果想为节点添加多个标签,可以重复使用 --label
参数。
5.1.2 选择器与标签的匹配逻辑
节点选择器允许我们通过声明性的方式来指定Pod应该运行在哪个节点上。在Pod的定义中,通过 spec.nodeSelector
字段来指定需要匹配的标签。
一个包含节点选择器的Pod定义示例如下:
apiVersion: v1
kind: Pod
metadata:
name: myapp
spec:
containers:
- name: myapp-container
image: myapp:1.0
nodeSelector:
rack: "1"
在这个例子中,Pod myapp
将只部署到具有 rack=1
标签的节点上。如果集群中有多个节点都具有这个标签,那么调度器将根据自己的调度策略选择一个节点来部署该Pod。
5.2 节点选择器的高级应用
5.2.1 组合选择器的使用场景
节点选择器可以通过逻辑组合来创建更复杂的调度规则。目前,Kubernetes支持两种组合选择器: matchExpressions
和 matchFields
。 matchExpressions
使用基于键值对的表达式,而 matchFields
基于字段的表达式(在Kubernetes 1.12及以后版本中不推荐使用)。
例如,如果要调度Pod到标签为 rack=1
且 environment=production
的节点,可以使用以下配置:
apiVersion: v1
kind: Pod
metadata:
name: myapp
spec:
containers:
- name: myapp-container
image: myapp:1.0
nodeSelector:
matchExpressions:
- key: rack
operator: In
values:
- "1"
- key: environment
operator: In
values:
- "production"
在这个Pod配置中, matchExpressions
定义了两个条件,调度器将只选择同时满足这两个条件的节点。
5.2.2 选择器性能的影响因素
虽然节点选择器是一个简单的调度工具,但它的性能和效率可能会受到多种因素的影响:
- 标签的数量:一个节点上的标签数量过多可能会降低调度器的查找效率。
- 节点的规模:在拥有大量节点的集群中,调度器需要遍历更多的节点来查找匹配的选择器。
- 选择器的复杂性:使用复杂的逻辑组合会增加调度器的计算负担。
为了避免这些潜在的性能问题,建议合理规划节点标签的使用,并且在必要时使用更高级的调度机制,如节点亲和性和反亲和性规则。
在下一章节中,我们将进一步探讨节点亲和性和反亲和性的高级应用,以及如何在实际环境中测试和验证这些调度规则的有效性。
6. Pod优先级和预占机制测试
6.1 Pod优先级的设置与测试
6.1.1 优先级的定义和应用
在Kubernetes中,Pod优先级是一种策略,用于定义在资源不足时哪些Pod应该首先被调度。通过为Pod设置不同的优先级,集群管理员能够控制Pod在资源竞争中的优先顺序。优先级的定义通常包含在Pod的定义中,或者通过Pod的调度策略来指定。
优先级由一个整数值表示,数值越大表明优先级越高。当资源不足以满足所有Pod的需求时,系统会根据Pod的优先级来决定哪些Pod可以继续运行,哪些Pod可能会被终止。这种方式确保了高优先级的任务能够获得所需资源,而低优先级的任务可能需要等待资源的释放。
6.1.2 高优先级Pod的调度优先级验证
为了验证Pod优先级的有效性,可以通过模拟资源紧张的场景来进行测试。以下是测试步骤:
- 创建多个Pod,每个Pod都有一个优先级设置。
- 确保集群中的资源不足以满足所有Pod的需求。
- 观察在资源紧张时,哪些Pod被成功调度,哪些Pod处于等待状态。
- 验证高优先级的Pod是否被优先调度。
- 验证低优先级Pod在资源不足时是否被正确地驱逐。
在执行测试时,可以使用以下命令来创建具有不同优先级的Pod:
apiVersion: v1
kind: Pod
metadata:
name: high-priority-pod
spec:
priority: 1000
containers:
- name: nginx
image: nginx
apiVersion: v1
kind: Pod
metadata:
name: low-priority-pod
spec:
priority: 100
containers:
- name: busybox
image: busybox
使用 kubectl get pods
命令可以查看Pod的调度状态。在资源紧张的情况下,预期将看到高优先级的Pod high-priority-pod
被成功调度,而低优先级的Pod low-priority-pod
可能仍然处于Pending状态。
通过上述测试,我们可以确认Pod优先级策略是否按照预期工作,确保高优先级的应用可以优先获得所需的资源。
6.2 预占机制的实现与测试
6.2.1 预占机制的工作原理
预占机制允许在创建高优先级Pod时,预先保留资源,以防止资源被低优先级Pod占用,从而提高高优先级Pod的调度效率。这个机制是通过Kubernetes的调度器组件实现的,当调度器接收到高优先级Pod的调度请求时,它会进行预占检查,如果发现节点上有足够的资源可以满足高优先级Pod的需求,则会在节点上打上预占标记,阻止低优先级Pod的调度。
预占机制的关键在于确保高优先级Pod创建时能立即获得资源,而不是等待正在运行的低优先级Pod释放资源。这需要Kubernetes调度器对资源的实时状态进行准确的预测和管理。
6.2.2 预占与调度的协调性测试
为了验证预占机制与调度的协调性,可以执行以下测试步骤:
- 确保集群中有若干个节点和正在运行的低优先级Pod。
- 创建一个高优先级Pod,观察调度器的行为。
- 验证调度器是否成功在目标节点上打上了预占标记。
- 检查低优先级Pod是否被从预占节点上驱逐。
- 确认高优先级Pod是否被调度到正确的目标节点。
在测试中,需要监控Kubernetes调度器的日志和节点资源的状态,确认预占过程是否如预期执行。以下命令可以用来查看节点上是否存在预占标记:
kubectl describe node <node-name>
在输出的信息中,应该可以看到预占相关的事件和标记。通过这种方式,我们可以验证预占机制是否正确地与调度器协同工作。
通过执行这些测试步骤,我们能够评估Pod优先级和预占机制在实际场景中的应用效果,以确保它们能够在生产环境中有效地管理资源和调度Pod。
7. 服务质量(QoS)等级测试
在Kubernetes中,服务质量(Quality of Service, QoS)是根据Pod资源的请求和限制来确定的,用于指示在资源竞争时对Pod执行的优先级。QoS等级对于集群资源的高效利用和高可用性具有重要作用。本章将深入探讨QoS等级的分类、作用以及在调度过程中如何应用QoS等级。
7.1 QoS等级的分类与作用
QoS等级分为三个类别:Guaranteed、Burstable和BestEffort,每种类别的Pod在资源竞争时将享受不同的调度优先级。
7.1.1 不同QoS等级的描述
- Guaranteed :当Pod的每个容器都指定了CPU和内存的资源请求和限制,并且这两个值相等时,该Pod被归类为Guaranteed。这种类型的Pod在资源竞争时享有最高优先级。
- Burstable :对于设置了资源请求但没有设置资源限制,或者两者设置但不相等的Pod,会被认为是Burstable。它们在资源充足时表现良好,但在资源紧张时可能会被限制。
- BestEffort :未指定资源请求和限制的Pod属于BestEffort等级。在资源紧张时,这些Pod是首先被缩减资源的对象。
7.1.2 QoS与资源分配的关系
QoS等级直接影响Pod的资源分配和调度。例如,当节点资源不足时,Kubernetes会首先考虑终止BestEffort的Pod以释放资源。而在Guaranteed Pod和Burstable Pod之间,前者由于请求和限制一致,更容易被系统保证资源。
7.2 QoS等级对调度的影响
QoS等级在调度策略中的应用是确保集群稳定运行的关键部分。调度器会根据Pod的QoS等级来决定其在集群中的部署位置和资源分配。
7.2.1 调度策略中的QoS应用
- 在调度过程中,Guaranteed和Burstable Pod将比BestEffort Pod更有优先权获取资源。
- 当节点资源不足以满足所有Pod的需求时,调度器会根据QoS等级来确定哪些Pod可能会被终止。
7.2.2 QoS变更对Pod运行的影响测试
为了测试QoS等级变化对Pod运行的影响,可以进行以下步骤:
- 创建一个Guaranteed Pod,确保其资源请求和限制一致。
- 创建一个Burstable Pod,设置资源请求但不设置资源限制。
- 创建一个BestEffort Pod,不设置资源请求和限制。
- 使用命令
kubectl get pods --output=jsonpath='{.items[*].status.qosClass}'
验证Pod的QoS等级。 - 减少节点资源(例如,通过使用
stress-ng
工具消耗CPU和内存资源),观察各Pod的资源使用情况和稳定性。 - 记录并分析资源不足时Pod被终止的顺序和时机。
通过这些测试,我们可以验证QoS等级如何在实际的资源竞争中发挥作用,以及调度器如何根据这些规则来确保集群资源的有效分配和Pod的稳定性。这种测试对于设计高可用性和资源效率的应用部署至关重要。
简介:本文深入探讨了Kubernetes(K8s)应用部署和调度的核心功能,详细介绍了各种调度策略的测试用例设计。从资源需求匹配到故障恢复和自定义调度器,全面覆盖了确保Kubernetes高效、稳定调度容器化应用的各个方面。