Flux tool1发布全新的6个Controlnet 哩布可免费下载会员模型

 没有Controlnet的生态是不完全的生态,强大如Flux都知道,提示词理解能力我已经很强了,画面已经这么可控了,但出Controlnet才能将生态推向浪潮,Flux tools,名副其实的工具箱,Controlnet一次发布了6款模型,包含了canny、depth、FLUX.1 Fill重绘填充(也就是inpaiting)、扩图以及adapter风格模型,接下来我们进行Flux模型大盘点。另外哩布哩布可免费下载会员模型,趁这个时间赶紧下载自己喜欢的模型吧。

图片

温馨提示公众号已开启留言功能哦,本次发布新模型以及工作流整合包都放在文件夹啦~,点击上方蓝色字,回复关键字【flux】领取一键安装包~~码字不易,希望大家点赞收藏在看~~

图片

图片

FLUX.1 tool,这是一系列模型,旨在为我们的基础文本到图像模型FLUX.1增加控制和可操作性,使得真实和生成的图像能够被修改和重新创造。

FLUX.1 tool 汇总

FLUX.1工具套件包含四个独特的功能,它们将作为开放访问模型在FLUX.1 [dev]模型系列中提供,并通过BFL API补充FLUX.1 [pro]:

1. FLUX.1 Fill:最先进的修复和扩展模型,允许根据文本描述和二进制蒙版编辑和扩展真实和生成的图像。

2. FLUX.1 Depth:基于输入图像中提取的深度图和文本提示进行结构引导的模型。

3. FLUX.1 Canny:基于从输入图像中提取的Canny边缘和文本提示进行结构引导的模型。

4. FLUX.1 Redux:允许混合和重新创建输入图像和文本提示的适配器。

功能介绍

FLUX.1 Fill:修复与扩展

FLUX.1 Fill引入了先进的修复能力,超越了现有的工具,如Ideogram 2.0和流行的开源变体,如AlimamaCreative的FLUX-Controlnet-Inpainting。它允许无缝编辑,与现有图像自然融合。

图片

图片

性能对比

我们的基准测试结果显示,FLUX.1 Fill [pro]是目前最先进的修复模型,其次是FLUX.1 Fill [dev],它在推理效率上更胜一筹。

图片

FLUX.1 Canny / Depth:结构条件

结构条件使用Canny边缘或深度检测来在图像转换过程中保持精确控制。通过保留原始图像的结构,用户可以在保持核心构图的同时进行文本引导的编辑。

图片

图片

 性能对比

在我们的评估中,FLUX.1 Depth在性能上超越了专有模型,如Midjourney ReTexture。FLUX.1 Canny [pro]在同类产品中表现最佳。

图片

FLUX.1 Redux:图像变化与重风格化

FLUX.1 Redux是所有FLUX.1基础模型的适配器,用于图像变化生成。它可以根据输入图像复制图像,并允许对给定图像进行微调。

图片

性能对比

我们的基准测试显示,FLUX.1 Redux在图像变化方面达到了最先进的性能。它自然地集成到更复杂的工作流程中,通过提示解锁图像重新设计。通过我们的API提供一个图像和一个提示词,可以使用Restyling。我们的最新型号FLUX1.1[pro]Ultra支持该功能,允许将输入图像和文本提示组合在一起,以创建具有灵活宽高比的高质量400万像素输出。

图片

图片

工作流

canny

图片

fill

图片

图片

图片

哩布哩布可免费下载会员模型

https://www.liblib.art/modelinfo/f4455edd1dd8492ea39ab7930e203742?from=personal_page&versionUuid=8fd846ae8961403fb69daff29976c1c8

打开哩布哩布,下载客户端

图片

点击exe

图片

安装完启动,下载webui或者comfyui

图片

点击一键启动海量模型

图片

熟悉的webui

图片

赶紧下载体验吧~~

往期精彩内容

240亿参数开源可用最接近Midjourney风格的模型V3版本

Comfyui 史上最强反推提示词 V2版本

为什么这么骚?是本人吗?

AI打造小红书网红 Flux放大修脸工作流

40万播放黑神话亢金龙通关结算画面 win一键整合包

黑神话 悟空 FLux工作流参见 高一致性

FLUX.1  Stable diffusion开源120亿参数AI绘画史上最大的模型

SD3大模型时代启航 SDwebui1.10更新 多项优化

一键安装所有AI项目 再见了整合包

全民舞王收费?腾讯开源windows一键包 Comfyui免费可用 一键部署

超越MJ6 快手kolors 手慢无 ComfyUI工作流合集分享第三期

AI一张图片 还你一个动画  免费开源一键整合包

快手可灵AI生成视频内测申请手册

Sora生成1分钟视频需要12分钟

KK长这样子你信吗?

AI变声器chatTTS教程来了!5S夺走你的卧槽

声音好难选啊~选萝莉还是御姐?

全网首发:Stable Diffusion 3 Medium SD3模型参见 附带Comfyui工作流

### 配置与使用多个ControlNet进行工作流处理 在FLUX模型中支持多种类型的ControlNet模块,这些模块可以被组合起来用于增强图像生成的效果。当涉及到配置并使用多个ControlNet时,主要通过定义不同ControlNet的功能角色来完成特定的任务需求。 对于想要利用`Flux ControlNet Depth`以及其他类型的ControlNets构建一个多ControlNet的工作流来说,可以通过设置参数指定各个ControlNet的作用范围及其权重[^2]。具体操作如下: #### 定义多ControlNet架构 首先,在初始化阶段就要明确哪些ControlNet会被加载到网络结构之中。这通常是在创建实例的时候完成的,比如下面这段Python代码展示了如何同时引入两个不同的ControlNet——一个是负责深度感知(`Depth`),另一个可能是边缘检测(`Canny Edge Detection`)。 ```python from flux_model import FluxModel, ControlNetWrapper depth_controlnet = ControlNetWrapper('controlnet_depth') edge_detection_controlnet = ControlNetWrapper('controlnet_canny') model = FluxModel(control_nets=[depth_controlnet, edge_detection_controlnet]) ``` 这里假设`FluxModel`类接受一个名为`control_nets`的列表作为输入之一,该列表包含了所有要使用的ControlNet对象。 #### 调整各ControlNet的影响程度 接着就是调整每一个ControlNet在整个合成过程中的影响力大小。这种调节通常是通过对每个ControlNet分配相应的比例因子实现的;也就是说,可以让某些ControlNet对最终输出有更大的贡献度而让其他的相对次要一些。这部分逻辑可能体现在训练过程中动态改变或是静态设定好固定的比例关系。 ```python # 假设set_weight方法用来给定某个ControlNet的重要性系数 depth_controlnet.set_weight(0.7) # 更重视深度信息 edge_detection_controlnet.set_weight(0.3) # 边缘特征辅助作用 ``` 上述例子表明了给予深度控制网更高的优先级(即更大影响),而在一定程度上也保留了一些来自边缘检测的信息以帮助改善细节表现。 #### 执行带有多个ControlNet的工作流 最后一步则是执行这个已经配置好的含有多个ControlNet的工作流。一旦所有的准备工作都完成了之后,只需要调用相应的方法即可启动整个流程,并获得预期的结果图片或其他形式的数据输出。 ```python output_image = model.process(input_image) ``` 综上所述,就是在FLUX框架内实现多ControlNet协同工作的基本方式[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值