极智开发 | 使用 Rp 类对 pytorch 算子作替换操作

  本教程记录了使用 Rp 类对 pytorch 算子作替换操作。

  现在的 AI 训练框架众多,主流还是 tf 和 pytorch,部署框架也很多,如 TRT、Openvino、TVM、NCNN、Tengine。。。在训练和部署之间,往往还需要你再做一件事,那就是模型转换,特别是像海思、昇腾、比特大陆之类,都会优先支持 caffe,但是现在谁训练还在用 caffe 呢。

  ONNX 的出现就是为了解决以上的 Gap,但 ONNX 对于一些自研网络又往往做不到全覆盖。所以学习一些模型转换的技巧也是需要的。

  这里介绍一下 from_pytorch 进行模型转换时进行算子替换的方法,主要使用了 Rp 类来实现。

  Rp 类的定义如下:

class Rp(object):
    def __init__(self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值