本教程记录了使用 Rp 类对 pytorch 算子作替换操作。
现在的 AI 训练框架众多,主流还是 tf 和 pytorch,部署框架也很多,如 TRT、Openvino、TVM、NCNN、Tengine。。。在训练和部署之间,往往还需要你再做一件事,那就是模型转换,特别是像海思、昇腾、比特大陆之类,都会优先支持 caffe,但是现在谁训练还在用 caffe 呢。
ONNX 的出现就是为了解决以上的 Gap,但 ONNX 对于一些自研网络又往往做不到全覆盖。所以学习一些模型转换的技巧也是需要的。
这里介绍一下 from_pytorch 进行模型转换时进行算子替换的方法,主要使用了 Rp 类来实现。
Rp 类的定义如下:
class Rp(object):
def __init__(self