Hadoop运维经验

1. HDFS存储多目录

若HDFS存储空间紧张,需要对DataNode进行磁盘扩展

(1)修改hdfs-site.xml

<property>

    <name>dfs.datanode.data.dir</name>

<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///hd2/dfs/data2,file:///hd3/dfs/data3,file:///hd4/dfs/data4</value>

</property>

(2)增加磁盘后,保证每个目录数据均衡

bin/start-balancer.sh –threshold 10

对于参数10,代表的是集群中各个节点的磁盘空间利用率相差不超过10%

开启之后会实时去监测,对集群有一定的压力,均衡完之后可以考虑关闭

bin/stop-balancer.sh

2.配置hadoop集群支持LZO压缩配置

企业内用的多的是snappy和lzo两种压缩方式。而hadoop本身并不支持lzo压缩,需要自己根据集群的情况编译

(1)编译步骤:

Hadoop支持LZO

0. 环境准备

maven(下载安装,配置环境变量,修改sitting.xml加阿里云镜像)

gcc-c++

zlib-devel

autoconf

automake

libtool

通过yum安装即可,yum -y install gcc-c++ lzo-devel zlib-devel autoconf automake libtool

1. 下载、安装并编译LZO

wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.10.tar.gz

tar -zxvf lzo-2.10.tar.gz

cd lzo-2.10

./configure -prefix=/usr/local/hadoop/lzo/

make

make install

2. 编译hadoop-lzo源码

2.1 下载hadoop-lzo的源码,下载地址:https://github.com/twitter/hadoop-lzo/archive/master.zip

2.2 解压之后,修改pom.xml

    <hadoop.current.version>2.7.2</hadoop.current.version>

2.3 声明两个临时环境变量

     export C_INCLUDE_PATH=/usr/local/hadoop/lzo/include

     export LIBRARY_PATH=/usr/local/hadoop/lzo/lib

2.4 编译

    进入hadoop-lzo-master,执行maven编译命令

    mvn package -Dmaven.test.skip=true

2.5 进入target,hadoop-lzo-0.4.21-SNAPSHOT.jar 即编译成功的hadoop-lzo组件

(2)将编译好后的hadoop-lzo-0.4.20.jar 放入hadoop-2.7.2/share/hadoop/common/

cp hadoop-lzo-0.4.20.jar /usr/local/hadoop/share/hadoop/common/

# 分发到其他机器

xsync /usr/local/hadoop/share/hadoop/common/hadoop-lzo-0.4.20.jar

(3)core-site.xml增加配置支持LZO压缩

    <!--配置支持LZO压缩-->

    <property>

        <name>io.compression.codecs</name>

        <value>

            org.apache.hadoop.io.compress.GzipCodec,

            org.apache.hadoop.io.compress.DefaultCodec,

            org.apache.hadoop.io.compress.BZip2Codec,

            org.apache.hadoop.io.compress.SnappyCodec,

            com.hadoop.compression.lzo.LzoCodec,

            com.hadoop.compression.lzo.LzopCodec

        </value>

    </property>

    <property>

        <name>io.compression.codec.lzo.class</name>

        <value>com.hadoop.compression.lzo.LzoCodec</value>

    </property>

(4)创建lzo索引

LZO压缩文件的可切片特性依赖于其索引,故我们需要手动为LZO压缩文件创建索引

# 示例

hadoop jar /usr/local/hadoop/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /forlearn/shop-wh/bigtable.lzo

3.hadoop参数调优

3.1 HDFS参数调优hdfs-site.xml

dfs.namenode.handler.count=20 * log2(Cluster Size),比如集群规模为8台时,此参数设置为60

The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes. NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。对于大集群或者有大量客户端的集群来说,通常需要增大参数dfs.namenode.handler.count的默认值10。设置该值的一般原则是将其设置为集群大小的自然对数乘以20,即20logN,N为集群大小

3.2 YARN参数调优yarn-site.xml

  • 情景描述:总共7台机器,每天几亿条数据,数据源->Flume->Kafka->HDFS->Hive 面临问题:数据统计主要用HiveSQL,没有数据倾斜,小文件已经做了合并处理,开启的JVM重用,而且IO没有阻塞,内存用了不到50%。但是还是跑的非常慢,而且数据量洪峰过来时,整个集群都会宕掉。基于这种情况有没有优化方案。
  • 解决办法:内存利用率不够。这个一般是Yarn的2个配置造成的,单个任务可以申请的最大内存大小,和Hadoop单个节点可用内存大小。调节这两个参数能提高系统内存的利用率。
    • (a)yarn.nodemanager.resource.memory-mb 表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
    • (b)yarn.scheduler.maximum-allocation-mb 单个任务可申请的最多物理内存量,默认是8192(MB)。
3.3 Hadoop宕机

  • 如果MR造成系统宕机。此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存量,默认是8192M)
  • 如果写入文件过量造成NameNode宕机。那么调高Kafka的存储大小,控制从Kafka到HDFS的写入速度。高峰期的时候用Kafka进行缓存,高峰期过去数据同步会自动跟上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值