B06 - 009、Hive组件

本文深入解析Hive的组件构成,包括用户接口、元数据存储以及解释器、编译器、优化器和执行器的工作原理。介绍了Hive如何通过CLI、JDBC/ODBC和WebGUI提供用户交互,元数据在关系数据库中的存储方式,以及HQL查询的处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初学耗时:0.5h

注:CSDN手机端暂不支持章节内链跳转,但外链可用,更好体验还请上电脑端。

一、Hive组件
  1.1  用户接口。
  1.2  元数据存储。
  1.3  解释器、编译器、优化器、执行器。



记忆词:

  用户接口、元数据存储、解释器、编译器、优化器、执行器

B06 - 999、大数据组件学习③ - Hive


ギ 舒适区ゾ || ♂ 累觉无爱 ♀





一、Hive组件

  1.1 ~ 用户接口。
  • 包括 CLI、JDBC/ODBC、WebGUI。
  • 其中,CLI(command line interface)为 shell 命令行;JDBC/ODBC 是 Hive 的 JAVA 实现,与传统数据库JDBC 类似;WebGUI 是通过浏览器访问 Hive。
  1.2 ~ 元数据存储。
  • 通常是存储在关系数据库如 mysql/derby 中。Hive 将元数据存储在数据库中。
  • Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
  1.3 ~ 解释器、编译器、优化器、执行器。
  • 完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。
  • 生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。


鱼圉圉,鸟喈喈,草履对芒鞋。

- - - - - - - - - - - - - - - - - - - - - - - - - - - -


※ 世间诱惑何其多,坚定始终不动摇。

数据流程图与结构图相比,它更适合于客观描述,而结构图着重描述软件模块间的_______。


控制
alt



鱼圉圉,鸟喈喈,草履对芒鞋。

- - - - - - - - - - - - - - - - - - - - - - - - - - - -


注:CSDN手机端暂不支持章节内链跳转,但外链可用,更好体验还请上电脑端。

我知道我的不足,我也知道你的挑剔,但我就是我,不一样的烟火,谢谢你的指指点点,造就了我的点点滴滴:)!



鱼圉圉,鸟喈喈,草履对芒鞋。


### 处理 YOLOv5 文件路径从 `traint` 移动到 `train` 的方法 在处理 YOLOv5 数据集时,如果存在文件路径错误或者需要将数据从一个目录移动到另一个目录(例如从 `traint` 到 `train`),可以按照以下方式操作: #### 1. 路径修正 假设当前的数据存储结构如下: - **原始路径**: `/path/to/dataset/traint/images` 和 `/path/to/dataset/traint/labels` - **目标路径**: `/path/to/dataset/train/images` 和 `/path/to/dataset/train/labels` 可以通过简单的命令完成路径的修改。以下是 Linux 系统中的具体操作步骤。 ```bash mv /path/to/dataset/traint /path/to/dataset/train ``` 这条命令会将整个 `traint` 目录重命名为 `train`[^1]。 #### 2. 验证路径一致性 为了确保路径一致性和数据完整性,建议验证以下几点: - 检查 `train/images` 和 `train/labels` 是否已成功创建并包含对应的内容。 - 使用脚本确认图片和标签的数量匹配。例如,编写 Python 脚本来统计文件数量: ```python import os image_dir = "/path/to/dataset/train/images" label_dir = "/path/to/dataset/train/labels" num_images = len(os.listdir(image_dir)) num_labels = len(os.listdir(label_dir)) print(f"Number of images: {num_images}") print(f"Number of labels: {num_labels}") if num_images != num_labels: print("Warning: The number of images and labels do not match.") else: print("Images and labels are consistent.") ``` 此代码片段可以帮助快速发现潜在问题[^2]。 #### 3. 新配置文件 YOLOv5 训练通常依赖于 YAML 配置文件指定数据路径。如果路径已经改,则需同步新该文件中的字段。例如,原配置可能为: ```yaml train: ../dataset/traint/images val: ../dataset/valid/images ``` 将其改为新的路径: ```yaml train: ../dataset/train/images val: ../dataset/valid/images ``` 这样可以确保模型训练过程中能够正确加载数据[^4]。 --- ### 注意事项 - 如果涉及跨平台迁移(如 Windows 至 Linux 或反之),注意斜杠方向差异以及绝对路径相对路径的选择。 - 对于大规模数据集,推荐使用符号链接代替实际复制或移动文件以节省磁盘空间。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值