pytorch_sparse教程

本文介绍PyTorch Sparse库中的关键函数:合并、转置及矩阵乘法操作。详细解析了如何通过这些函数处理稀疏矩阵,包括示例代码。

pytorch_sparse教程

Coalesce

torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
逐行排序index并删除重复项。通过将重复项映射到一起来删除重复项。对于映射,可以使用任何一种torch_scatter操作。

参数

  • index(LongTensor) -稀疏矩阵的索引张量。
  • value (Tensor) -稀疏矩阵的值张量。
  • m (int) -稀疏矩阵的第一个维度。
  • n (int) -稀疏矩阵的第2维。
  • op (string,可选)-使用的散射操作。(默认值:“add”)

返回

  • index (LongTensor) -稀疏矩阵的合并索引张量。
  • value (Tensor) -稀疏矩阵的合并值张量。
import torch
from torch_sparse import coalesce

index = torch.tensor([[1, 0, 1, 0, 2, 1],
                      [0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])

index, value = coalesce(index, value, m=3, n=2)
------------------------------------------------------------

Transpose

torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
对稀疏矩阵的0维和1维进行转置。
参数

  • index(LongTensor) -稀疏矩阵的索引张量。
  • value (Tensor) -稀疏矩阵的值张量。
  • m (int) -稀疏矩阵的第一个维度。
  • n (int) -稀疏矩阵的第2维。coalesced (bool,可选)-如果设置为False,将不会合并输出。(默认值是真实的)

返回

  • index(longtensor) - 稀疏基质的转置索引张量。
  • value(张量) - 稀疏矩阵的转置值张量。
import torch
from torch_sparse import transpose
index = torch.tensor([[1, 0, 1, 0, 2, 1], [0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
index, value = transpose(index, value, 3, 2)
----------------------------------------------------
print(index)
tensor([[0, 0, 1, 1],
        [1, 2, 0, 1]])
print(value)
tensor([[7.0, 9.0],
        [5.0, 6.0],
        [6.0, 8.0],
        [3.0, 4.0]])

Sparse Dense Matrix Multiplication

torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
一个稀疏矩阵与一个密集矩阵的矩阵乘积。
参数

  • index(LongTensor) -稀疏矩阵的索引张量。
  • value (Tensor) -稀疏矩阵的值张量。
  • m (int) -稀疏矩阵的第一个维度。
  • n (int) -稀疏矩阵的第2维。矩阵(张量)-密集矩阵。

返回

  • out(张量)-密集输出矩阵。
import torch
from torch_sparse import spmm

index = torch.tensor([[0, 0, 1, 2, 2], [0, 2, 1, 0, 1]])
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
out = spmm(index, value, 3, 3, matrix)
------------------------------------------
print(out)
tensor([[7.0, 16.0],
        [8.0, 20.0],
        [7.0, 19.0]])

Sparse Sparse Matrix Multiplication

torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)

两个稀疏张量的矩阵乘积。两个输入稀疏矩阵都需要合并(使用coalesced属性强制)。

参数

  • indexA (LongTensor) -第一个稀疏矩阵的索引张量。
  • valueA (Tensor) -第一个稀疏矩阵的值张量。
  • indexB (LongTensor) -第二稀疏矩阵的索引张量。
  • valueB (Tensor) -第二稀疏矩阵的值张量。
  • m (int) -第一个稀疏矩阵的第一个维度。
  • k (int) -第一个稀疏矩阵的第二次维和第二个稀疏矩阵的第一次维。
  • n (int) -第2个稀疏矩阵的第2维。
  • coalesced (bool,可选):如果设置为True,将合并两个输入稀疏矩阵。(默认值:False)

返回

  • index(LongTensor) -稀疏矩阵的输出索引张量。
  • value (Tensor) -稀疏矩阵的输出值张量。
import torch
from torch_sparse import spspmm

indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
valueA = torch.Tensor([1, 2, 3, 4, 5])

indexB = torch.tensor([[0, 2], [1, 0]])
valueB = torch.Tensor([2, 4])

indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)

参考

https://github.com/rusty1s/pytorch_sparse

“tmpxft_000061d4_00000000-7_cutlassB_f32_aligned_k65536_dropout.cudafe1.cpp [4835/7459] Building CXX object caffe2\CMakeFiles\torch_cuda.dir\__\torch\csrc\jit\tensorexpr\cuda_codegen.cpp.obj E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): warning C4805: “==”: 在操作中将类型“c10::impl::ScalarTypeToCPPType<c10::ScalarType::Bool>::type”与类型“T”混合不安全 with [ T=int ] E:\PyTorch_Build\pytorch\torch/csrc/jit/tensorexpr/ir.h(395): note: 模板实例化上下文(最早的实例化上下文)为 E:\PyTorch_Build\pytorch\torch\csrc\jit\tensorexpr\cuda_codegen.cpp(147): note: 查看对正在编译的函数 模板 实例化“bool torch::jit::tensorexpr::immediateEquals<int>(const torch::jit::tensorexpr::ExprPtr &,T)”的引用 with [ T=int ] [4844/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\quantized\cuda\FakeQuantizeCore.cu.ob FakeQuantizeCore.cu tmpxft_000011c8_00000000-7_FakeQuantizeCore.cudafe1.cpp [4850/7459] Building CUDA object caffe2\CMakeFiles\torch_c...aten\src\ATen\native\sparse\cuda\SparseCsrTensorMath.cu.ob SparseCsrTensorMath.cu tmpxft_00000e1c_00000000-7_SparseCsrTensorMath.cudafe1.cpp [4854/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/StorageMethods.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\StorageMethods.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp E:\PyTorch_Build\pytorch\torch\csrc\StorageMethods.cpp(9): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4855/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Storage.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Storage.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp E:\PyTorch_Build\pytorch\torch\csrc\Storage.cpp(10): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4856/7459] Building CXX object caffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj FAILED: [code=2] caffe2/torch/CMakeFiles/torch_python.dir/csrc/Module.cpp.obj C:\PROGRA~2\MICROS~2\2022\BUILDT~1\VC\Tools\MSVC\1444~1.352\bin\Hostx64\x64\cl.exe /nologo /TP -DAT_PER_OPERATOR_HEADERS -DBUILDING_TESTS -DEXPORT_AOTI_FUNCTIONS -DFMT_HEADER_ONLY=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNOMINMAX -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DPy_NO_LINK_LIB -DTHP_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUSE_CUDA -DUSE_EXTERNAL_MZCRC -DUSE_ITT -DUSE_MIMALLOC -DUSE_NUMPY -DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE=1 -D_UCRT_LEGACY_INFINITY -Dtorch_python_EXPORTS -IE:\PyTorch_Build\pytorch\build\aten\src -IE:\PyTorch_Build\pytorch\aten\src -IE:\PyTorch_Build\pytorch\build -IE:\PyTorch_Build\pytorch -IE:\PyTorch_Build\pytorch\nlohmann -IE:\PyTorch_Build\pytorch\moodycamel -IE:\PyTorch_Build\pytorch\third_party\mimalloc\include -IE:\PyTorch_Build\pytorch\torch\.. -IE:\PyTorch_Build\pytorch\torch\..\aten\src -IE:\PyTorch_Build\pytorch\torch\..\aten\src\TH -IE:\PyTorch_Build\pytorch\build\caffe2\aten\src -IE:\PyTorch_Build\pytorch\build\third_party -IE:\PyTorch_Build\pytorch\build\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\valgrind-headers -IE:\PyTorch_Build\pytorch\torch\..\third_party\gloo -IE:\PyTorch_Build\pytorch\torch\..\third_party\onnx -IE:\PyTorch_Build\pytorch\torch\..\third_party\flatbuffers\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\kineto\libkineto\include -IE:\PyTorch_Build\pytorch\torch\..\third_party\cpp-httplib -IE:\PyTorch_Build\pytorch\torch\..\third_party\nlohmann\include -IE:\PyTorch_Build\pytorch\torch\csrc -IE:\PyTorch_Build\pytorch\torch\csrc\api\include -IE:\PyTorch_Build\pytorch\torch\lib -IE:\PyTorch_Build\pytorch\torch\standalone -IE:\PyTorch_Build\pytorch\torch\lib\libshm_windows -IE:\PyTorch_Build\pytorch\torch\csrc\api -IE:\PyTorch_Build\pytorch\c10\.. -IE:\PyTorch_Build\pytorch\c10\cuda\..\.. -IE:\PyTorch_Build\pytorch\third_party\fmt\include -IE:\PyTorch_Build\pytorch\third_party\onnx -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googlemock\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\googletest\googletest\include -external:IE:\PyTorch_Build\pytorch\third_party\protobuf\src -external:IE:\PyTorch_Build\pytorch\third_party\XNNPACK\include -external:IE:\PyTorch_Build\pytorch\third_party\ittapi\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\eigen -external:IE:\PyTorch_Build\pytorch\third_party\ideep\mkl-dnn\include\oneapi\dnnl -external:IE:\PyTorch_Build\pytorch\third_party\ideep\include -external:IE:\PyTorch_Build\pytorch\INTERFACE -external:IE:\PyTorch_Build\pytorch\third_party\nlohmann\include -external:IE:\PyTorch_Build\pytorch\third_party\concurrentqueue -external:IE:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -external:IE:\Python310\Include -external:I"E:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\include" -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\pybind11\include -external:IE:\PyTorch_Build\pytorch\cmake\..\third_party\opentelemetry-cpp\api\include -external:IE:\PyTorch_Build\pytorch\third_party\cpp-httplib -external:IE:\PyTorch_Build\pytorch\third_party\NVTX\c\include -external:W0 /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -DHAVE_AVX512_CPU_DEFINITION -DHAVE_AVX2_CPU_DEFINITION /Zc:preprocessor /Zc:preprocessor /Zc:preprocessor /O2 /Ob2 /DNDEBUG /bigobj -DNDEBUG -std:c++17 -MD /permissive- /EHsc /bigobj -O2 /utf-8 /showIncludes /Focaffe2\torch\CMakeFiles\torch_python.dir\csrc\Module.cpp.obj /Fdcaffe2\torch\CMakeFiles\torch_python.dir\ /FS -c E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp E:\PyTorch_Build\pytorch\torch\csrc\Module.cpp(34): fatal error C1083: 无法打开包括文件: “libshm.h”: No such file or directory [4872/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\group_norm_kernel.cu.obj group_norm_kernel.cu tmpxft_00005adc_00000000-7_group_norm_kernel.cudafe1.cpp [4873/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\UfuncCUDA_add.cu.obj UfuncCUDA_add.cu tmpxft_00006bdc_00000000-7_UfuncCUDA_add.cudafe1.cpp [4875/7459] Building CUDA object caffe2\CMakeFiles\torch_cuda.dir\__\aten\src\ATen\native\cuda\Unique.cu.obj Unique.cu tmpxft_00000658_00000000-7_Unique.cudafe1.cpp ninja: build stopped: subcommand failed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch>” “PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env Error: [Errno 13] Permission denied: 'E:\\PyTorch_Build\\pytorch\\rtx5070_env\\Scripts\\python.exe' PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas 3 channel Terms of Service accepted Retrieving notices: done Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Miniconda3 added / updated specs: - openblas The following packages will be downloaded: package | build ---------------------------|----------------- libopenblas-0.3.30 |pthreads_ha4fe6b2_2 3.8 MB conda-forge openblas-0.3.30 |pthreads_h4a7f399_2 262 KB conda-forge ------------------------------------------------------------ Total: 4.0 MB The following NEW packages will be INSTALLED: libopenblas conda-forge/win-64::libopenblas-0.3.30-pthreads_ha4fe6b2_2 openblas conda-forge/win-64::openblas-0.3.30-pthreads_h4a7f399_2 Proceed ([y]/n)? y Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置cuDNN路径 (rtx5070_env) PS E:\PyTorch_Build\pytorch> @" >> set(CUDNN_INCLUDE_DIR "E:/Program Files/NVIDIA/CUNND/v9.12/include/13.0") >> set(CUDNN_LIBRARY "E:/Program Files/NVIDIA/CUNND/v9.12/lib/13.0/x64/cudnn64_9.lib") >> message(STATUS "Applied custom cuDNN settings") >> "@ | Set-Content set_cudnn.cmake (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 在CMakeLists.txt第一行插入引用 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $cmakeFile = "CMakeLists.txt" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $content = Get-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent = @() (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += "include(set_cudnn.cmake)" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent += $content (rtx5070_env) PS E:\PyTorch_Build\pytorch> $newContent | Set-Content $cmakeFile (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装OpenBLAS (rtx5070_env) PS E:\PyTorch_Build\pytorch> conda install -c conda-forge openblas -y 3 channel Terms of Service accepted Channels: - conda-forge - defaults - nvidia - pytorch-nightly Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "✅ 构建环境优化完成" -ForegroundColor Green ✅ 构建环境优化完成 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 检查GPU支持状态 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -c "import torch; print(f'CUDA可用: {torch.cuda.is_available()}')" Traceback (most recent call last): File "<string>", line 1, in <module> File "E:\PyTorch_Build\pytorch\torch\__init__.py", line 415, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的模块。 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 查看已完成任务比例 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $total = 7459 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $completed = (Get-ChildItem build -Recurse -File | Measure-Object).Count (rtx5070_env) PS E:\PyTorch_Build\pytorch> $percent = [math]::Round(($completed/$total)*100, 2) (rtx5070_env) PS E:\PyTorch_Build\pytorch> Write-Host "构建进度: $completed/$total ($percent%)" 构建进度: 12552/7459 (168.28%) (rtx5070_env) PS E:\PyTorch_Build\pytorch>”
最新发布
09-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值