java like查询 mongodb_Java操作MongoDB模糊查询和分页查询

本文介绍如何使用Java进行MongoDB的模糊查询与分页查询,包括完全匹配、左右匹配及模糊匹配等不同类型的正则表达式应用,并展示了记录总数查询、排序及分页的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文实例为大家分享了java操作mongodb模糊查询和分页查询,供大家参考,具体内容如下

模糊查询条件:

1、完全匹配

pattern pattern = pattern.compile("^name$", pattern.case_insensitive);

2、右匹配

pattern pattern = pattern.compile("^.*name$", pattern.case_insensitive);

3、左匹配

pattern pattern = pattern.compile("^name.*$", pattern.case_insensitive);

4、模糊匹配

pattern pattern = pattern.compile("^.*name8.*$", pattern.case_insensitive);

记录总数查询:

count(),返回查询总数。

查询记录排序:basicdbobject sort = new basicdbobject();

sort.put("name",1);

1、表示正序;-1.表示倒序

分页查询:skip(),跳过多少条记录

limit(),返回多少条记录

代码实例:

package com.what21.mongodb.demo;

import java.util.arraylist;

import java.util.list;

import java.util.set;

import java.util.regex.pattern;

import com.mongodb.basicdbobject;

import com.mongodb.db;

import com.mongodb.dbcollection;

import com.mongodb.dbcursor;

import com.mongodb.dbobject;

import com.mongodb.mongoclient;

import com.mongodb.mongoclientoptions;

import com.mongodb.mongocredential;

import com.mongodb.serveraddress;

public class operatedemo2 {

/**

* @return

* @throws exception

*/

public static mongoclient getmongoclient()throws exception{

try {

//===================================================//

list serverlist = new arraylist();

serverlist.add(new serveraddress("192.168.18.85", 27017));

//===================================================//

list mclist = new arraylist();

string username = "root";

string database = "demo";

char[] password = "root123".tochararray();

mclist.add(mongocredential.createcredential(username, database,password));

//===================================================//

mongoclientoptions.builder builder = mongoclientoptions.builder();

// 与目标数据库能够建立的最大connection数量为50

builder.connectionsperhost(50);

// 如果当前所有的connection都在使用中,则每个connection上可以有50个线程排队等待

builder.threadsallowedtoblockforconnectionmultiplier(50);

// 一个线程访问数据库的时候,在成功获取到一个可用数据库连接之前的最长等待时间为2分钟

// 这里比较危险,如果超过maxwaittime都没有获取到这个连接的话,该线程就会抛出exception

// 故这里设置的maxwaittime应该足够大,以免由于排队线程过多造成的数据库访问失败

builder.maxwaittime(1000*60*2);

// 与数据库建立连接的timeout设置为1分钟

builder.connecttimeout(1000*60*1);

//===================================================//

mongoclientoptions mco = builder.build();

return new mongoclient(serverlist, mclist, mco);

} catch (exception e) {

throw e;

}

}

/**

* @param dbname

* @return

* @throws exception

*/

public static db getdb(string dbname) throws exception{

return getmongoclient().getdb(dbname);

}

/**

* @param db

*/

public static void collections(db db){

set colls = db.getcollectionnames();

for (string collname : colls) {

system.out.println(collname);

}

}

/**

* 记录总数查询

*

* @param db

* @param name

*/

public static void count(db db,string name){

dbcollection dbcoll = db.getcollection(name);

int count = dbcoll.find().count();

system.out.println("共有: " + count + "个");

}

/**

* 模糊查询

*

* @param db

* @param name

*/

public static void query(db db,string name){

dbcollection dbcoll = db.getcollection(name);

//完全匹配

//pattern pattern = pattern.compile("^name$", pattern.case_insensitive);

//右匹配

//pattern pattern = pattern.compile("^.*name$", pattern.case_insensitive);

//左匹配

//pattern pattern = pattern.compile("^name.*$", pattern.case_insensitive);

//模糊匹配

pattern pattern = pattern.compile("^.*name8.*$", pattern.case_insensitive);

basicdbobject query = new basicdbobject();

query.put("name",pattern);

basicdbobject sort = new basicdbobject();

// 1,表示正序; -1,表示倒序

sort.put("name",1);

dbcursor cur = dbcoll.find(query).sort(sort);

int count = 0;

while (cur.hasnext()) {

dbobject obj = cur.next();

system.out.print("name=" + obj.get("name"));

system.out.print(",email=" + obj.get("email"));

system.out.println(",passwd=" + obj.get("passwd"));

count ++;

}

system.out.println("共有: " + count + "个");

}

/**

* 分页查询

*

* @param db

* @param name

* @param start

* @param pagesize

*/

public static void page(db db,string name,int start,int pagesize){

dbcollection dbcoll = db.getcollection(name);

basicdbobject sort = new basicdbobject();

sort.put("name",1);

dbcursor cur = dbcoll.find().sort(sort).skip(start).limit(pagesize);;

int count = 0;

while (cur.hasnext()) {

dbobject obj = cur.next();

system.out.print("name=" + obj.get("name"));

system.out.print(",email=" + obj.get("email"));

system.out.println(",passwd=" + obj.get("passwd"));

count ++;

}

system.out.println("共有: " + count + "个");

}

/**

* @param args

* @throws exception

*/

public static void main(string[] args) throws exception {

db db = getdb("demo");

collections(db);

string name = "users";

system.out.println("count()=================================================");

count(db,name);

system.out.println("query()=================================================");

query(db,name);

system.out.println("page()=================================================");

page(db,name,10, 10);

}

}

以上就是java操作mongodb模糊查询和分页查询的实现代码,希望对大家的学习有所帮助。

如您对本文有疑问或者有任何想说的,请点击进行留言回复,万千网友为您解惑!

<think>好的,我现在需要帮助用户比较MongoDB查询语法SQL查询语法的区别相似之处。首先,我应该回忆一下用户提供的引用内容,看看里面有哪些具体的例子要点可以引用。 用户提到了几个引用,比如引用[1]中关于MongoDB使用$gt、$gte等操作符进行范围查询,而SQL用BETWEEN或者比较运算符。引用[3]提到了一个查询例子,类似于SQL的SELECT语句。还有引用[4]中提到的$where子句使用JavaScript来比较字段,这在SQL中可能用简单的WHERE条件。引用[2]关于正则表达式查询,SQL可能需要使用LIKE或正则表达式函数。引用[5]是关于数据库操作的,比如创建、删除数据库,这部分可能查询语法关系不大,但可以提及基本操作的不同。 接下来,我需要组织回答的结构。用户希望了解两者的差异相似之处,可能需要分点对比。比如,从基本结构、条件查询、投影、高级查询等方面来比较。 首先,基本查询结构。MongoDB使用find方法,而SQL是SELECT语句。例如,引用[3]中的例子,MongoDB的find对应SQL的SELECT。这里可以指出两者的结构差异,MongoDB以JSON形式传递条件,SQL用关键字子句。 然后,条件查询。比较操作符的不同,比如MongoDB的$gt对应SQL的>,还有逻辑运算符如$andSQL的AND。范围查询的例子,如引用[1]中的时间范围查找,MongoDB使用多个操作符组合,而SQL用BETWEEN。正则表达式查询方面,MongoDB的语法更简洁,如引用[2]中的正则,而SQL可能需要使用LIKE或特定函数。 接着,投影(选择字段)。MongoDB通过第二个参数指定包含或排除字段,而SQL用SELECT后跟字段名。需要注意MongoDB中不能同时包含排除大部分字段,除了_id,这点引用[3]有提到。 高级查询部分,MongoDB的$where允许执行JavaScript,如引用[4]中的例子,而SQL可能需要更复杂的子查询或函数。关联查询方面,MongoDB使用$lookup进行类似SQL的JOIN,但非关系型设计通常建议不同的数据模型。 另外,分页排序,MongoDB用limit、skipsort方法,对应SQL的LIMIT、OFFSETORDER BY。 总结时,可以强调两者的设计哲学差异,MongoDB的灵活文档模型适合非结构化数据,而SQL适合结构化数据。同时指出语法上的相似之处,比如投影条件查询的逻辑结构相似。 最后,生成相关问题,可能需要涉及性能比较、适用场景、数据建模差异等,确保问题与用户当前主题相关,并且覆盖他们可能感兴趣的方面。 需要确保回答中使用正确的格式,行内公式用$...$,独立公式用$$...$$,不过这里可能用不上数学公式。同时引用正确的来源,比如引用[1]、[2]、[3]、[4]中的例子,并在末尾添加引用标识。 检查是否有遗漏的差异点,比如聚合框架vs SQL的GROUP BY,或者索引的使用差异,但根据用户提供的引用,可能不需要深入这些方面,除非有直接相关的信息。用户提供的引用中没有提到聚合操作,所以可能暂时不讨论。 确保语言简洁,结构清晰,分点列出区别相似之处,每个部分用小标题,然后具体说明,并引用例子。避免使用技术术语过多,但必要的术语需要正确使用。</think>### MongoDB查询语法与SQL查询语法的比较 #### **1. 基本查询结构** - **MongoDB**:使用`find()`方法,通过JSON格式传递查询条件。 示例:查询`status`为`"A"`的记录 ```javascript db.inventory.find({ status: "A" }) ``` 对应**SQL**的`SELECT`语句: ```sql SELECT * FROM inventory WHERE status = 'A'; -- [^3] ``` - **相似之处**:均通过条件筛选数据,逻辑结构类似(`WHERE`条件对应JSON键值对)。 --- #### **2. 条件查询** - **比较操作符** - MongoDB使用`$gt`、`$gte`、`$lt`、`$lte`等操作符,例如查询时间范围: ```javascript db.CollectionAAA.find({ CreateTime: { $gte: ISODate("2023-01-01T00:00:00Z"), $lt: ISODate("2023-01-02T00:00:00Z") } }) // [^1] ``` - SQL直接使用`>`、`>=`等符号: ```sql SELECT * FROM CollectionAAA WHERE CreateTime BETWEEN '2023-01-01' AND '2023-01-02'; ``` - **逻辑运算符** - MongoDB:`$and`、`$or`、`$not` ```javascript db.users.find({ $or: [{ age: { $gt: 18 } }, { name: "Alice" }] }) ``` - SQL:`AND`、`OR`、`NOT` ```sql SELECT * FROM users WHERE age > 18 OR name = 'Alice'; ``` - **正则表达式** - MongoDB支持直接在查询中使用正则: ```javascript db.users.find({ name: /joey?/i }) // 不区分大小写匹配"joey"或"joeyy"等[^2] ``` - SQL需依赖特定函数(如`LIKE`或`REGEXP`): ```sql SELECT * FROM users WHERE name LIKE '%joey%'; ``` --- #### **3. 字段投影(选择返回的列)** - **MongoDB**:通过第二个参数指定包含(`1`)或排除(`0`)字段: ```javascript db.inventory.find({ status: "A" }, { item: 1, status: 1 }) // 仅返回itemstatus字段[^3] ``` - **SQL**:直接在`SELECT`后列出字段: ```sql SELECT item, status FROM inventory WHERE status = 'A'; ``` --- #### **4. 高级查询** - **字段间比较** - MongoDB需使用`$where`执行JavaScript表达式: ```javascript db.policyExceptionRecordMo.find({ $where: "this.beforePolicyStage != this.afterPolicyStage" }) // [^4] ``` - SQL可直接在`WHERE`中比较字段: ```sql SELECT * FROM policyExceptionRecordMo WHERE beforePolicyStage <> afterPolicyStage; ``` - **关联查询** - MongoDB使用`$lookup`实现类似`JOIN`的操作(非推荐用法): ```javascript db.orders.aggregate([{ $lookup: { from: "users", localField: "user_id", foreignField: "_id", as: "user_info" } }]) ``` - SQL通过`JOIN`直接关联表: ```sql SELECT * FROM orders JOIN users ON orders.user_id = users.id; ``` --- #### **5. 分页与排序** - **MongoDB**:链式调用`limit()`、`skip()`、`sort()`: ```javascript db.users.find().sort({ age: -1 }).skip(10).limit(5) // 按年龄倒序,跳过前10条,取5条 ``` - **SQL**:使用`LIMIT`、`OFFSET`、`ORDER BY`: ```sql SELECT * FROM users ORDER BY age DESC OFFSET 10 LIMIT 5; ``` --- ### **核心差异总结** | **特性** | **MongoDB** | **SQL** | |-------------------|--------------------------------------|----------------------------------| | **数据模型** | 文档型(灵活嵌套结构) | 表结构(严格行列约束) | | **查询语法** | JSON格式操作符(如`$gt`) | 关键字组合(如`>`、`BETWEEN`) | | **关联查询** | 非关系设计,需`$lookup`模拟`JOIN` | 原生支持`JOIN` | | **正则表达式** | 直接内嵌语法(`/joey?/i`) | 依赖`LIKE`或扩展函数(如`REGEXP`) | | **字段间比较** | 需`$where`执行脚本 | 直接比较字段 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值