
ACE_CDT
Learning to Restore Low-Light Images via Decomposition-and-Enhancement (CVPR 2020)
算法思想: 从粗糙到精细,学习一个网络将图像分离出低频和高频信息,先对图像的低频区域进行增强、保留颜色等处理,然后基于低频增强结果恢复高频区域的细节。

模型结构如上图,基本的增强结构是

第一阶段:
假设低频区域的增强函数为 C,输入为 图像的 低频区域 I,颜色恢复放大函数为 A,则第一阶段的结果为

Learning to Restore Low-Light Images via Decomposition-and-Enhancement (CVPR 2020)
算法思想: 从粗糙到精细,学习一个网络将图像分离出低频和高频信息,先对图像的低频区域进行增强、保留颜色等处理,然后基于低频增强结果恢复高频区域的细节。
模型结构如上图,基本的增强结构是
第一阶段:
假设低频区域的增强函数为 C,输入为 图像的 低频区域 I,颜色恢复放大函数为 A,则第一阶段的结果为