图像细节是高频还是低频_图像增强 ACE-DCT 低频高频信息分离后增强

本文介绍了CVPR 2020年提出的图像低光恢复算法ACE_CDT,该算法通过分解和增强策略,首先处理图像的低频部分,再恢复高频区域细节。模型包括ACE模块用于分离低频和高频信息,以及CDT模块旨在缩小低照度和增强图像之间的特征差距。然而,论文中一些技术细节如残差模块的作用和缩放向量的计算并未明确解释,使得理解模型完全工作原理具有一定挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1eaf2516cc69c6618dc930eb044de6d3.png

ACE_CDT

Learning to Restore Low-Light Images via Decomposition-and-Enhancement (CVPR 2020)

算法思想: 从粗糙到精细,学习一个网络将图像分离出低频和高频信息,先对图像的低频区域进行增强、保留颜色等处理,然后基于低频增强结果恢复高频区域的细节。

8e73b49aa8f0c9db6d07c598b8d6f840.png

模型结构如上图,基本的增强结构是

equation?tex=UNet ​结构

第一阶段:

假设低频区域的增强函数为 C,输入为 图像的 低频区域 I,颜色恢复放大函数为 A,则第一阶段的结果为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值