python做灰色关联度分析_【数学建模】通过python实现灰色关联度计算

本文介绍了使用Python进行灰色关联度分析的方法,包括数据变换、关联分析的原理和步骤,并提供了一个实例,展示了如何对运动员成绩进行因素分析,通过标准化数据和计算关联系数来确定各个因素的关联程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.关联分析

关联分析主要作用为对系统的因素进行分析,其主要作用为分辨因素中哪些因素对系统的影响是显著的,哪些影响是次要的。通常而言因素分析的主要方式为回归分析等,但其存在数据量要求大,计算量大等诸多问题,为克服以上问题,可采用关联分析进行系统分析。

数据变换方法

在进行系统分析之前,应对原始数据进行数据变换处理,以消除量纲。

数据变换的定义:

设有序列

x = ( x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) ) x=(x(1), x(2), \cdots, x(n))x=(x(1),x(2),⋯,x(n))

则称映射:

f : x → y f: x \rightarrow yf:x→y

f ( x ( k ) ) = y ( k ) , k = 1 , 2 , ⋯   , n f(x(k))=y(k), \quad k=1,2, \cdots, nf(x(k))=y(k),k=1,2,⋯,n

为序列x xx到序列y yy的数据变换。

常见的数据变换方法有:

(1)初始化变换:

f ( x ( k ) ) = x ( k ) x ( 1 ) = y ( k ) , x ( 1 ) ≠ 0 f(x(k))=\frac{x(k)}{x(1)}=y(k), \quad x(1) \neq 0f(x(k))=x(1)x(k)​=y(k),x(1)​=0

(2)均值化变换:

f ( x ( k ) ) = x ( k ) x ˉ = y ( k ) , x ˉ = 1 n ∑ k = 1 n x ( k ) f(x(k))=\frac{x(k)}{\bar{x}}=y(k), \quad \bar{x}=\frac{1}{n} \sum_{k=1}^{n} x(k)f(x(k))=xˉx(k)​=y(k),xˉ=n1​∑k=1n​x(k)

(3)归一化变换:

f ( x ( k ) ) = x ( k ) x 0 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值