时间序列分析方法——ARIMA模型案例

本文介绍了ARIMA模型在时间序列分析中的建模过程,包括数据读取、自相关图、平稳性检验、差分、选择合适的p,q值,以及模型检验和预测。通过对数据的差分和模型选择,最终确定ARIMA(0,1)模型为最佳模型,并进行了未来9日的预测。" 106435132,8707873,理解Java静态代码块的执行顺序,"['Java', '编程基础', '类加载', '对象初始化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


时间序列分析方法1主要有:时间序列分解模型、指数平滑模型、ARIMA模型。

一、方法简介

方法 简介
时间序列分解模型 该模型认为某一经济变量时间序列Yt主要由长期趋势T、季节变动S、周期变动C和不规则变动I四种因素构成,Yt是这四种因素的函数。 Y t = f ( T t , S t , C t , I t ) Y_t=f(T_t,S_t,C_t,I_t)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步,慕至千里

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值