tensorflow+python flask进行手写识别_基于flask+TensorFlow的手写数字识别模型Web应用开发...

本文介绍了使用TensorFlow框架训练手写数字识别模型,并结合Python的flask框架开发Web应用程序的过程。通过LeNet-5 CNN模型进行训练,利用MNIST数据集,最终实现了一个手写数字识别的Web应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

龙源期刊网

http://www.qikan.com.cn

基于

flask+TensorFlow

的手写数字识别模

Web

应用开发

作者:张磊

李斌

李臻

来源:《新一代》

2019

年第

22

要:手写数字识别是研究图像识别、深度学习技术的典型案例,本文中以手写数字识

Web

应用程序开发为例,介绍了基于

flask

框架的

TensorFlow+Python Web

开发技术和相关

的编程方法。

关键词:

flask

框架

;Python Web

开发

;

手写数字识别

一、引言

图像识别是深度学习技术最广泛的应用之一,手写数字识别是学习和研究深度学习、图像

识别的典型案例,本文中使用

TensorFlow

(以下简称

TF

)框架训练手写数字识别模型、

Python

语言作为

Web

开发工具,基于

flask

框架实现了一款手写数字识别

Web

应用程序,为

TF

模型在

Web

中部署和开发应用提供参考。

二、模型训练和保存

手写数字识别采用

LeNet-5 CNN

模型。

LeNet-5

INPUT

层、

2

个卷积层、

2

个池化层、

3

个全连接层构成。

INPUT

层的输入尺寸为

32×

32

像素手写数字图像,手写数字包含数字

“0

9”

OUTPUT

层输出

One-Hot

格式的

10

分类结果。

训练模型的

MNIST

数据集中图片尺寸为

28×

28

像素,像素点用

8

位灰度值表示。由于

LeNet-5

模型

INPUT

层的输入尺寸为

32×

32

像素,

MNIST

数据集中原始图像尺寸并不符合模

型输入要求,使用

numpy

库(简称为

np

)中的数组填充函数

np.pad

()將原始图像四周填充

两圈数字

“0”

,得到尺寸

32×

32

像素的新图像。

MNIST

数据集类别标签默认是

One-Hot

格式。

TF

是基于计算图的框架,使用

TF

框架训练

LeNet-5

模型,根据模型结构定义的神经网络

前向传播过程构造出计算图,计算图中描述张量在节点之间从前到后的流动过程。训练模型在

会话进行,调用

tf.Session

()可生成会话,并创建默认计算图。在会话中不断喂入数据,反

复执行反向传播优化算法,确定最优的模型参数。

模型训练完,将模型保存成

TF

检查点。检查点可在

Web

服务器端由程序调用,在

TF

中,

tf.train.Saver

对象的

save

()和

restore

()方法分别用于保存和恢复模型参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值