每天深陷各项繁琐表格处理中,我们还在用一个一个excel公式处理各种数据,然后呈现出不同图形。累不说,效率低,还不能随心所欲DIY,必须遵序种种excel规则,这种烦恼,苦恼你好久,如果你会python表格处理库pandas,这个问题就可以迎刃而解~~~我们分几步教大家快速学习!!!
step1:
安装pandas:pip install pandas
step2:
# 导入pandas
import pandas as pd
# 读取数据,此数据保存在json文件中,也可以加载excel,csv等表格形式数据
df = pd.read_json("employ_data.json")
step3:
我们看下展现数据,我们熟悉员工信息表
图一
老板说,小王帮我统计下员工薪资表和不同部门平均薪资高低?这时候你拿起计算器,一个一个开始计算,然后记到笔记簿上,在用繁琐excel表格去作图,数据量小还可以,但是大了呢,你得累的~~,这就省略200字,你懂得~ 我们尝试用pandas来解决上述需求
首先我们来做员工薪资表,代码如下:
# 根据列组合视图,values是薪资,name是行指标
employ_salary = df.pivot_table(values='salary',index='name')
# 柱状图展现
employ_salary.plot.bar(title="employ_salary_show",color="purple")
看下效果:员工薪资表
再来做下不同部门平均薪资高低,代码如下:
# 不同部门平均薪资水平
depart_salary_mean = df.groupby("depart")["salary"].mean()
# 横向柱状图展现
depart_salary_mean.plot.barh(subplots=True,title="depart_salary_mean",color="r")
亲ლ(°◕‵ƹ′◕ლ)看下效果:不同部门平均薪资水平
这样看来,几行代码就可以搞定事,你说快乐不快乐,如果没尽兴,再教大家一个炫酷的,空心饼图~~
单纯的看下薪资,一行代码哟~~~
df.iloc[:,2].plot.pie(figsize=(5,5),radius=1,wedgeprops=dict(width=0.3,edgecolor='w'),colors=['r','g','b','y','k'])一眼就可以看出哪号员工薪资最低了哈
只有你想不到的创意,没有pandas不能实现功能!!!