c++ 空间直线与平面夹角_几何:平面几何、立体几何、解析几何

本文深入探讨了C++中空间直线与平面的平行、垂直关系,包括定义、判定和性质。同时讲解了异面直线、线面角、面面角的计算方法,涉及空间几何体的表面积、体积和各种几何问题的求解策略。此外,还涵盖了空间向量在解决几何问题中的应用,如向量法求解异面直线夹角、线面角和二面角等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

128022cbd9342898382d40566dc63423.png

本篇内容在知识地图中的位置:

c74d315956b9fc6042383e5746f25ccd.png

88e2e3a8a0e236bf1a1035e0ee656e22.png

参考文本:

模块三:几何学:一切源自公理和逻辑 20:几何学: 为什么是数学中最古老的分支?

21:公理体系:系统理论从何而来?

22: 非欧几何:相对论的数学基础是什么?

23:解析几何:用代数方法解决更难的几何题

24: 为什么几何能为法律提供理论基础?

平面几何

立体几何 空间直线、平面直接的平行关系 三个公理 共线问题

截面问题

共点问题

共面问题

直线和直线平行 空间直线平行的定义

直线和直线平行的判定

直线和直线平行的性质

直线和平面平行 直线和平面平行的定义

直线和平面平行的判定

直线和平面平行的性质

平面和平面平行 平面和平面平行的定义

平面和平面平行的判定

平面和平面平行的性质

空间直线、平面直接的垂直关系 异面直线 异面直线的定义

异面直线的判定

异面直线垂直的判定

异面直线所成角的概念

直线和直线垂直 空间直线垂直的定义

直线和直线垂直的判定

直线和直线垂直的性质

直线和平面平行 直线和平面垂直的定义

直线和平面垂直的判定

直线和平面垂直的性质

平面和平面平行 平面和平面垂直的定义

平面和平面垂直的判定

平面和平面垂直的性质

空间几何体的表面积和体积 三视图与直观图 空间几何体的三视图

利用三视图探究空间几何体

用公式法求面积和体积 直接用公式

通过分割法用公式求体积比

探求高再用公式

用等体积法求体积 三棱锥体积

变换地面、或高求体积

利用等体积求距离

用分割法求面积和体积

空间几何体中综合问题 球的有关性质 球的截面的性质

球的体积

球的表面积

正方体的外接球、内接球、棱切球

长方体的外接球

正四面体的外接球、内接球、棱切球

几种常见的补形法 四面体的补形法

三侧棱两辆垂直的三棱锥补成长方体

对棱相等的三棱锥补成长方体

利用特殊位置确定最值 利用垂直关系确定高的位置

利用圆锥曲线的定义转化为点到面的距离

利用侧面展开求距离最小值

利用目标函数求体积最值 基本不等式

函数单调性

空间向量与立体几何` 异面直线所成角的计算 平移法做异面直线所成角

补形法做异面直线所成角

利用三余弦公式求解异面直线所成角

线面角的计算 定义法求解线面角

等体积法求点到面的距离进而求解线面角

面面角的计算 定义法作平面的平面角

三垂线法

射影面积法

补形法

空间距离的计算 定义法

等体积法

合理转化

空间向量初步 空间向量坐标系与点的坐标

空间的点、线、面的向量表示

空间平面的法向量

空间向量证明垂直、平行

空间向量的简单应用 向量法求解异面直线所成角

向量法求解线面角

向量法求解二面角、

向量法求解点到面的距离

解析几何 三角函数 三角函数概念 弧度制 终边相同的角的集合

象限角与轴线角

扇形弧长、面积公式

任意角的三角函数 锐角三角函数

任意角的三角函数定义

三角函数定义与圆周运动

三角函数值的符号

单位圆与三角函数线

诱导公式 三角函数诱导公式

利用诱导公式求值

函数的定义域 利用三角函数图象求定义域

用数轴求函数定义域

对称性 三角函数图象的对称性

三角函数图象的对称中心

根据三角函数的对称性求参数

三角恒等变换 同角三角函数关系 同角三角函数关系式

弦切互化

平方关系的利用

三角函数姐妹式

"和

差公式" 和差角公式的正用

和差角公式的逆用

和差角公式的变用

二倍角公式 二倍角公式的正用

二倍角公式的逆用

二倍角公式的变用

三角恒等变换 基本思路

角变换

1的代换

整体换元变角

三角函数图象 三角函数图象 五点作图法

三角函数图象的变换

函数图象重合

函数y=Asin 形式的解析式 五点法求解析式

代点法求解析式

由三角函数的图象变换求解析式

非极值点的处理策略·

简谐运动 类比三角函数研究简谐运动

类比三角函数定义研究圆周运动

借用三角函数图象研究问题 解三角方程

三角函数图象上点的意义

函数图象的交点问题

正弦函数的凹凸性

三角函数的性质 三角函数的单调性 三角函数的单调区间

根据三角函数图象判定函数单调性

根据复合和三叔单调性判断三角函数单调性

单调性与w的关系

单价函数值的大小比较

三角函数的奇偶性 三角函数的奇偶性

三角函数定义域对奇偶性的影响

根据函数奇偶性定义求参数

根据奇偶性函数图象特征求参数

奇函数最值对称性

三角函数的周期性 周期性

公式法求函数的周期

定义域对周期的影响

周期性的简单应用

三角函数的最值(值域) 利用单调性求给定区间的最值

利用换元法化为二次函数最值问题

辅助角公式

利用有界性

换元求导

基本不等式求最值

三角代换 三角换元求含根号的函数值域

参数方程与三角代换

平面向量 平面向量的概念 平面向量的基本概念 向量的概念

零向量

相等向量

单位向量

相反向量

向量的线性运算 平行四边型和三角形法则

向量的加法

向量的减法

数乘向量及其运用

向量的坐标运算 平面向量基本定理

向量的坐标定义

向量平行、垂直的充要条件 向量平行(共线)的充要条件

向量垂直的充要条件

三点共线问题

平面向量与三角形 判断三角形的形状、

三角形的外心

三角形的内心

三角形的垂心

三角形的重心

平面向量数量积 平面向量数量积的运算 定义法求数量积

基地法求数量积

坐标法求数量积

等式两边同乘以一个向量

平面向量的模 利用公式求模

遇模取平方的意识

向量的夹角 向量夹角的定义

利用夹角公式求向量的夹角

利用坐标法求向量的夹角

向量的夹角为锐角、直接、钝角的充要条件

向量的投影 投影的计算

数量积的几何意义的利用

投影模型

向量的面积模型 面积比

求三角形面积

平面向量的最值问题 构造目标函数求最值 一元函数

多元函数

坐标法求最值 代数坐标求最值

构造三角坐标求最值

利用模的有关性质求最值 向量不等式

几何模型,比如轨迹式圆

正余弦定理 正弦定理 正弦定理的适用条件

正弦定理与三角形增解的解决

正弦定理边角互化

余弦定理 余弦定理适用条件

利用余弦定理边角互化

三角形面积公式 三角形面积公式的选用

正余弦定理简单应用 三角形角平分线问题

中线问题

多次使用正余弦

四边形对角互补与余弦定理的多次使用

四边形与正余弦

解三角形基本问题 三角形中的不等式 锐角三角形问题

三角形边角的不等式

边长的取值范围

判断三角形的形状

三角形“解”的问题 三角形解的个数判断

三角形多解的讨论

比值的计算 将角正弦比化为边长比

统一边或角的方法

常见辅助线 作三角形一边上高

构造直角三角形

正余弦定理的综合应用 三角形中最值问题 边长最值

最大边、角,最小边角

基本不等式

解实际问题

利用面积相等

必修四 第一章 三角函数 1任意角和弧度制 任意角

弧度制

2任意角的三角函数 任意角的三角函数

同角的三角函数基本关系

3三角函数诱导公式

"4三角函数的图像

与性质" 正弦、余弦函数的图像

正弦、余弦函数的性质

正切函数的性质与图像

"5函数的图像

y=Asin()"

"6三角函数模型的

简单应用"

第二章 平面向量 "1平面向量的实际

背景及基本概念" 向量的物理背景与概念

向量的几何表示

相等向量与共线向量

2平面向量的线性运算 向量加法运算及其几何意义

向量减法运算及其几何意义

向量数乘运算及其几何意义

"3平面向量的基本定理

及坐标表示" 平面向量基本定理

平面向量的正交分解及坐标表示

平面向量的坐标运算

平面向量共线坐标表示

4平面向量的数量积 平面向量数量积的物理背景及意义

平面向量数量积的坐标表示、模、夹角

5平面向量的应用举例 平面几何中的向量方法

向量在物理中的应用举例

第三章 三角恒等变换 "1两角和与差的正弦

、余弦和正切公式" 两角差的余弦公式

两角和与差的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式

2简单三角恒等变换

必修二 第一章 空间几何体 1空间几何体的结构 柱、椎、台、球的结构特征

简单几何体的结构特征

"2简单几何体的三视图

和直观图" 中心投影与平面投影

空间几何体的三视图

空间几何体的直观图

"3空间几何体的

表面积与体积" 柱体、椎体、台体的表面积与体积

球的体积与表面积

第二章 "点、直线、

平面间的

位置关系" "1空间点、直线、

平面之间的位置关系" 平面

空间中直线与直线的位置关系

空间中直线与平面的位置关系

平面与平面的位置关系

"2直线、平面平行的

判定及其性质" 直线与平面平行的判定

平面与平面平行的判定

直线与平面平行的性质

平面与平面平行的性质

"3直线、平面垂直的

判定及其性质" 直线与平面垂直的判定

平面与平面垂直的判定

直线与平面垂直的性质

平面与平面垂直的性质

第三章 直线与方程 1直线的倾斜角与斜率 倾斜角与斜率

两条直线平行于垂直的判定

2直线与方程 直线的点斜式方程

直线的两点式方程

直线的一般式方程

"3直线的交点坐标与

距离公式" 两条直线的交点坐标

两点间的距离

点到直线的距离

两条直线的距离

第四章 圆与方程 1圆的方程 圆的标准方程

圆的一般方程

2直线、圆的位置关系 直线与圆的位置关系

圆与圆的位置关系

直线与圆的方程的应用

3空间直角坐标系 空间直角坐标系

空间两点的距离公式

平面解析几何

空间解析几何(立体解析几何) 向量代数 数量积 几何表示,代数表示

几何应用 求模,求夹角,垂直判定

向量积 几何表示,代数表示

几何应用 求垂直向量,求平行四边形面积,向量平行判定

混合积 运算规律 轮换对称性,交换变号

几何应用 平行六面体体积,三向量共面判定

题型 向量运算

向量运算的应用与向量的位置关系

空间平面与直线 平面方程 一般式,点法式,截距式

直线方程 一般式,对称式,参数式,两点式

距离 点到面,点到直线,直线到直线

题型 建立直线方程

建立平面方程

平面和直线位置关系有关的问题

曲面与空间曲线 曲面方程 一般式

空间曲线 一般式,参数式

常见曲面 柱面

旋转曲面 曲线绕坐标轴

直线绕直线

二次曲面

空间曲线投影

题型 建立柱面方程

建立旋转面方程

求空间曲线的投影曲线方程

直线方程 直线的倾斜角和斜率 直线的倾斜角

斜率

直线斜率的及取值范围

直线的方程 斜截式

截距式

截距与距离的区别

两条直线的位置关系 平行

垂直

相交

距离公式 两点之间距离

点到直线的距离

平行线之间的距离

对称问题 关于直线对称

关于点中心对称

有关距离和或差的最值

直线系问题 过定点的直线系

过两条直线的交点的直线系

平行直线系

垂直直线线

圆的方程 圆的定义 二元二次方程表示圆的充要条件

圆的点集式定义

阿波罗尼斯圆

圆的方程 圆的直径式方程

圆的参数方程及其应用

几何法求圆的标准方程

待定系数法求圆的方程

相关点法求圆的轨迹方程

点、线、圆的位置关系 点和圆的位置关系

直线与圆的位置关系

两圆的位置关系

圆中弦长问题 几何法求弦长

求弦的方程

切点弦长

两圆的相交线方程

两圆相交的公共弦长、

弦所对的圆心角

圆中最值问题 弦长最值

圆的面积最值

直线和圆的综合应用 圆的切线问题 在圆上一点处的切线方程

过圆外一点的切线方程

圆的切线长问题

切线长的最小值

切线的应用

直线和圆的最值问题 几何法求 圆张的最值

构造函数

利用基本不等式

解析法

直线与圆的位置关系 集合法判断

轨迹法

直线和圆弧相交问题

圆系方程 过两圆交点的圆系方程

过直线与圆交点的圆系方程

圆心共线的圆系

过一定点的圆系方程

圆锥曲线的定义与标准方程 定义

标准方程

定义的应用 椭圆、

双曲线

抛物线

圆锥曲线的几何性质 基本性质 椭圆

双曲线

抛物线

通径

对称

坐标的范围

焦点三角形

求离心率与范围 利用定义

代点构造齐次方程

几何性质

利用等量关系建立齐次方程

构造辅助圆

圆锥曲线的轨迹与最值问题 求轨迹方程 直译法

定义法

相关点法

交轨法

最值问题 构造函数

点到直线距离

同侧差最大,异侧和最小

数形结合

圆锥曲线中的定点问题 定值问题 斜率之积为定值

长度之比为定值

乘积为定值

定点问题 圆过定点

直线过定点

解题优化 巧设点

巧设k

点差法

同理可得

几何性质转化

向量、夹角、长度互化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值