2计算轮廓大小_GD&T干货 | 动态轮廓度深度讲解

e800c682015c068952f2f427445eaaca.gif7913202ca7d22329bd86bcd1b26a6bc4.gif

必读 →  收藏!2020年智慧汽车供应链俱乐部&智慧企培学院  课程计划

2019年10月乘用车综合销量排名快报,一汽大众遥遥领先

2019年10月在售485款车销量排行(全)轿车/SUV/MPV,10月新能源遭遇腰斩

2020 俱乐部课程超级优惠年卡,限量发售

热门课程 |确定开课,GD&T 公开课苏州18期,12.21-12.22

d7bf3949cfa30fccdfcabdf074d2a470.png

点击图片即可查看详情(苏州第十八期确定开课,准时开课,ASME认证高级GD&T专家吴老师授课,中国产品几何技术规范标准化委员;(授课依据最新(ASME14.5-2018和ISO1101-2017)的内容授课)

非对称轮廓度与动态轮廓度

在机械工程图中,对于异形曲面,我们只能采用轮廓度(线轮廓度和面轮廓度)进行控制。除了采用常规的轮廓度(即对称轮廓度)控制,还可以采用其他轮廓度,如非对称轮廓度,动态轮廓度,复合轮廓度等等。

今天我们主要聊非对称轮廓度和动态轮廓度。

本期文章我们要讨论的话题有以下几个:

1.ISO/ASME中修饰符号(U圈和UZ)前后的数字表示什么意思?

2.  U圈前后的数字可以为负号吗?前后数字的大小有范围要求吗?

3.  U圈和动态轮廓度之间是否有关系?

1. 非对称轮廓度

   不管是ISO还是ASME,轮廓度默认都是对称分布的。所谓对称分布,指的的是公差带的两个边界相对于理论轮廓是对称分布的(严格意义上讲,不是对称,是两侧的偏置量相同而已),如下图所示:

65e04baed5c6742f256372d6ece0781c.png

a图纸标注

aa0df1124aa9cb5afc72ba3d68532efc.png

b公差带分布

          图1 图纸标注和公差带分布

 图1中的宽度为0.5的公差带,是将理论轮廓内外各偏置(Offset)公差带的一半(0.25)形成的,只要被测零件的实际表面能够落在这个宽度为0.5的公差带范围内,该实际被测表面就是合格的。

      联想到尺寸要素的尺寸公差,轮廓度其实和下图概念的逻辑是一致的。

11e303707e1a8537160b1d35450f8890.png

图2 尺寸公差

根据GB/T 1800,图2中Φ20表达的是公称尺寸(即零线),js表达该轴的公差的基本偏差属于对称分布,而7则表示精度等级为IT7,对于公称尺寸为Φ20的尺寸而言,它决定了其公差的大小是0.02(需要查表)。

轮廓度属于几何公差,为什么我们要扯这个尺寸公差呢?因为通过尺寸公差的3大要素(1. 公称尺寸, 2. 基本偏差, 3公差)就可以确定尺寸要素的具体尺寸公差,这个最基本的底层逻辑同样适用于几何公差。

尤其是非对称公差,研究这种最基本的底层逻辑更有意义。

先来看一下非对称轮廓度。

本公众号的第一篇文章就介绍了非对称轮廓度,这里只做简单介绍。先看看美标,见图3:

2024d0d19265ccd24963130f07cf10be.png

a 图纸标注

db80485fe56da7dd962e05d6754043ba.png

 b 公差带分布

图3 非对称轮廓度与公差带

根据图3中的图纸标注,一旦采用U圈(美标),公差带相对于理论轮廓通常就是非对称分布的。那么它是怎么分布的呢?

根据美标Y14.5-2018或者Y14.5-2009中规定,U圈前面的数值表达的是公差值(0.5),U圈后边的数值表达的是公差带外边界相对于理论轮廓在加材料方向的偏置量(0.1),见图3中b图。

需要注意的是,加材料方向,实际上就是理论轮廓的法向(正方向是材料里指向材料外)。

0b25165d7257169f1025b0482fe805a1.png

图4 尺寸公差

我们再来扯扯尺寸公差,对比着来认识非对称轮廓度。如果采用公差代号来表达尺寸公差,我们发现除了基本偏差代号为JS和js以外的所有公差都是非对称分布的(建议参考GB/T1800.1或者ISO286-1)。

图4中轴的尺寸公差用公差代号Φ20g7表达,同样,表达尺寸公差的三大要素分别为:

  1. Φ20表达的是公称尺寸,决定了0线的位置

  2. g表达的是基本偏差(孔用大写字母,轴用小写字母),决定了公差相对于0线的偏差为0.007

  3. 7决定了公差值的大小为0.021

对比非对称轮廓度公差,同尺寸公差一样,表达它也同样需要三大要素:

  1. 理论轮廓(相当于尺寸公差中的公称尺寸Φ20)

  2. 偏置量,即U圈后面的数值,表示公差带外边界相对于理论轮廓的偏置量0.1(相当于尺寸公差中的g)

  3. 公差带大小,即U圈前面的数值,表示公差带总宽度为0.5(相当于尺寸公差中的7级精度等级)

     具体见图5:

d6c32c5cce903154fcee21e37110ccce.png

图5 几何公差与尺寸公差的共同逻辑

假如我们用尺寸公差的形式来表达图3中的非对称轮廓度,我们可以说它的要求是+0.1到-0.4(当然,这个仅用于口头交流)。

我们再来看看ISO中的非对称轮廓度是怎么回事。

     基于同样的逻辑,认识ISO中的非对称轮廓度就很容易,ISO中非对称公差的修饰符号是UZ(注意,没有圈),见下图:

1a873b7dd284a37de3f02f90154bf630.png

a 图纸标注

5dbfb3c8ecaa2c5f9a62123e75ea5ed8.png

b 公差带分布

 图6 ISO图纸标注和公差带分布

根据ISO的概念可知,修饰符号UZ前面的数值表达的是公差带的总宽度0.5,UZ后边的数值表达的是公差带的中心相对于理论轮廓的偏置量0.1(负号表达在公差带中心在材料里边,而正号则表达公差带中心在材料外边)。具体见图6。

我们仔细观察,也会发现ISO也是基于3大要素来表达非对称轮廓度公差的:

  1. 理论轮廓。

  2. 偏置量,即UZ后边的数值,表示公差带中心相对于理论轮廓的偏置量为0.1,负号表示方向,意思是公差带的中心在材料里边。

  3. 公差带大小,即UZ前面的数值,表示公差带总宽度为0.5。

对比ISO和ASME中的非对称轮廓度,UZ和U圈前面的数值都表示公差带的总宽度,这一点两个标准是相同的。唯一差别在于修饰符号U圈和UZ后边的数值,即偏置量的计算方式不一样,起点都是理论轮廓,但终点不一样。

1. ASME表达的是理论轮廓到公差带外边界的偏置量

2. ISO表达的是理论轮廓到公差带中心的偏置量

到这里,我们稍作总结,轮廓度公差的逻辑和尺寸公差的逻辑是一样的,无非就包含3个信息:1. 理论轮廓;2. 偏置量;3. 公差大小。ISO和ASME各自修饰符号(U圈和UZ)前面的数值都表达的是公差带的总宽度,U圈和UZ后边都表达的是偏置量,只是U圈的偏置量是从公差带外边界开始算,UZ的偏置量是从公差带中心开始算。

设计工程师为什么要采用非对称轮廓度呢?

如同尺寸公差要采用非对称公差一样,常见的应用工况之一就是为了“配合”。比如下图所示:

62fb2cd0a8a7d50ea439f40e616fc310.png

图7 内外板

图7中的外板和内板会焊接在一起,内板主要起到加强作用。内外板的“配合面”在数模上是零贴的,在焊接之前,我们希望外板的内槽大一些,内板则小一些。也就是说我能希望外板和内板之间的配合属于间隙配合。

      这时,我们就可以采用非对称轮廓度控制,见图8和图9。

1e916ff0c68ae32928ea73a622ef9678.png

图8 外板图纸

1026cae911ba4f9e3f1efe8a04d45f68.png

图9 内板图纸

图8中外板的配合面(内槽)采用非对称轮廓度控制,公差带相当于0到-0.6,这样会导致图8中内槽宽40的实际尺寸只会偏大,不会偏小。而图9中正好相反,它的公差带也是0到-0.6,会导致(外凸)宽度40的实际尺寸只会偏小,不会偏大。能够实现“间隙配合”。

具体偏大多少,偏小多少,我们把它设置成一道练习题,放在文章最后,供大家练习用。

2.  U圈和UZ前后数值的范围

接下来,进入在业界经常争论的一个话题,U圈前边和后边的数值是否都可以为负?U圈后边数值大小是否一定要比U圈前边的数值小?

这个话题之所以会成为业界争论的一个话题,那是因为根据最权威的依据-ASME Y14.5-2018, 对该话题它没有给出明确的说法,所以行业内不同的老师可能有不同的看法。

但是,标准没有明确说明,并不代表我们的观点可以没有依据,我们仍可以根据标准更深层次的逻辑和思路来讨论上述话题。

我先说明我个人的观点:

  1. U圈前面的数值只能为正值,不能为负值,更不能为0。理由:因为U圈前边的数值表达的是公差值的大小,即公差带的宽度。公差带的宽度不能为负值和0。

  2. U圈后边的数值,可以为正值,也可以为负值,也可以为0。理由:U圈后边的数值表达的是偏置量,偏置量可正可负,正负号表示方向,取决于公差带的外边界相对于理论轮廓的位置,如果公差带外边界是在法向正方向处(材料以外),为正,在法向负方向处(材料里边)则为负,如果刚好在理论轮廓上,则为0。

  3. U圈后边的数值和U圈前面的数值没有任何关系,可以比前边的数值大,也可以比前面的数值小。理由:U圈前面表示公差,U圈后边表示偏差,偏差和公差没有直接关系,所以U圈后边的数值比U圈前面的数值可以大,也可以小。

我们姑且把上面的结论称为“3大结论”。

那么ISO中的UZ呢?UZ在ISO标准(可参考ISO1101:2017)中的规范相应明确,上面3条也完全成立!具体见图10

029bac3ae109629b24882ee0193ff3b8.png

图10 ISO中的非对称轮廓度

图10是ISO标准对非对称轮廓度的解释,1表示理论轮廓,2号球球的直径是0.5,表达公差带中心相对理论轮廓的偏置量是0.5,因为在材料内部,所以要加负号,3号球球的直径是2.5,表达公差带的总宽度,4表示公差带的两个边界。

所以ISO这个UZ修饰符号前后数值的游戏规则,完全符合上面提到的3大结论。

讲到这里,可能有很多小伙伴表示不服气。你从头到尾都在拿非对称轮廓度和尺寸公差做对比,所以你认为他们逻辑或者思路就应该一样,是不是有点牵强?

确实有点牵强,接下来,我们死磕标准。

像基督徒一样证明针尖上究竟能站几个天使,要死磕圣经。

美标里,U圈前面的数值为什么不能为负?要回答该问题,我们首先应该回答下面这个问题,U圈前面的数值究竟表达什么含义?标准里也说得很清楚,具体见Y14.5-2018,P241:

96a5526a25a1b4823da359925bc75120.png

图11 美标中的定义

图11中红线部分,可以翻译成“在公差控制框格里,将非对称符号(U圈)放在公差值后边。”这句话就意味着,U圈前面的数值表达的是公差值!公差值是公差带的宽度或者直径,数值当然不能为负(几何公差中,你找个负的公差值出来给我看看?)。

所以上面3大结论中第一条成立的。

有小伙伴又会问,你凭什么胡咧咧三大结论中的第2条和第3条成立呢?

确实,在标准中我找不出直接的证据。

但是,如果我把3大结论中的第2条和第3条换个角度来问:

U圈后边的数值,为什么不可以为负?

U圈后边的数值为什么不能比U圈前面的数值大?

你能理直气壮的说出理由吗,举个例子也行啊?

我们会发现,我们其实找不到个硬核的理由来反驳三大结论中的第2条和第3条。 相反,我倒能找到支持3大结论中的第2条和第3条的案例。比如说动态轮廓度。

接下来,我们就讨论讨论最新标准出现的动态轮廓度(Dynamic Profile )

3. 动态轮廓度和非对称轮廓度

动态轮廓度(Dynamic Profile)是最新的美标(Y14.5-2018)推出的一个概念,它的修饰符号是一个朝上的等腰三角形。这个符号我个人的感觉是抄袭(说参考,或者对应也行)ISO中的修饰符号OZ。

      不管怎样,这个符号是一个非常重要的发明,在控制“相似度”上更加实用。关于它的用处,我们下一篇文章讨论。我们先讨论它的基本概念。具体见下图:

ff0edb231f972d497443aead02f0ba69.png

a 动态轮廓度图纸标注

8b2459ab0fb1da7d383364b0c8a05e82.png

b 动态轮廓度的公差带分布

图12 动态轮廓度与公差带分布

图12中表达的是动态轮廓度和公差带分布,注意观察b图中公差带的特点,公差带的边界是由理论轮廓偏置而来,偏置量为任意值,注意,是任意值,即偏置量为任意常数。但是公差带的总宽度为0.5,这个固定不变。

也就是说,公差带可以相对理论轮廓无限往材料外“扩张”,也可以无限往材料内“收缩”。 只要实际轮廓能够落在0.5的公差带范围内就合格。

还不太明白?我们换个方式来表示动态轮廓度,我们用非对称轮廓度来表达动态轮廓度:

59a4fb7de8a20762f9fc65938c67c398.png

图13 ASME中非对称轮廓度和动态轮廓度

图13用非对称轮廓来表达动态轮廓度,需要注意的是,非对称轮廓度U圈后边的字母d(偏置量)可以为任意值。见下图:

f6d45bfa24a23b46fdc182f22aa9ee02.png

a 图纸标注

ac12c8e363b95d6f100ad8baa746db83.png

b 公差带分布

图14 d为任意值的非对称轮廓度

图14用的是偏置量d为任意值的非对称轮廓度,它其实就是动态轮廓度的另外一种表达。通过对动态轮廓公差带的观察,我们不难发现,作为轮廓度公差的一种,它的公差带可以完全超出理论轮廓,也可以完全在理论轮廓以内。

也就是说,不管你愿不愿意,对动态轮廓度来说,图14中的d值,可以为负值,可以为正值,还可以大于U圈前面的数值。

既然公差带允许如此偏置,非对称轮廓度为什么不可以?非对称轮廓度的公差带完全脱离理论轮廓难道会死人?

我们回头仔细一想,会发现,非对称轮廓度和动态轮廓度之间的关系如下:

动态轮廓度就是偏置量为任意值的非对称轮廓度。而非对称轮廓度则是公差带处于特定位置的动态轮廓度。(这个特定位置可以完全处于材料里边即理论轮廓以内,或者完全在材料外边,即理论轮廓以外)

所以,通过对动态轮廓度的深度认识,就逻辑来说,我们会发现,3大结论中的第2条,第3条结论没有理由不能成立。

      通过对ASME的非对称轮廓度和动态轮廓度的分析,我们再对ISO的分析就相对容易的多。ISO中用OZ来表达美标“动态轮廓度”的概念,中文叫“未定义偏置量的轮廓度”,它和ISO中的非对称轮廓度也满足以下关系:

1128cac190eb7369ddddab279f019cba.png

图15 ISO中非对称轮廓度和未定义偏置量轮廓度

     图15中, 带OZ修饰符号的未定义偏置量轮廓度,相当于偏置量d为任意值的非对称轮廓度。

显然,对于ASME中的动态轮廓度和ISO中的未定义偏置量的轮廓度是同一个概念,因为是偏置量为任意值,那么偏置量的终点从公差带哪里开始计算也就不重要了。所以有以下等式成立:

48afae806820f29226c656016322ec82.png

图16 两个标准中偏置量为任意值的轮廓度

 好了,篇幅太长了,本期的文章先到这里。

      相信你还有问题,比如动态轮廓度应用在哪些方面?动态轮廓度可以单独使用吗?动态轮廓度如何检测?动态轮廓度和复合轮廓度有区别吗?欢迎您继续关注本公众号,我们下期将深入讨论动态轮廓度。

在小结之前,我们先做一个小调查,看了本期的文章后,对于U圈前后边的数值,你的观点是什么呢?

你有更多的话不吐不快?对作者的胡说八道恨之入骨?欢迎给我们留言!

本文小结

本期文章探讨了ISO和ASME中的非对称轮廓度,比较了两者的异同。同时将非对称轮廓度和动态轮廓度进行对比,得出了三大结论,并利用动态轮廓度的思路证明了3大结论成立。

课后练习:

已知零件图纸如下图所示,基于对非对称轮廓度的认识,请问EF面之间的距离的变化范围是多少?

d689d93e78a9781b11000a8a9e6e9310.png

图18 图纸标注

31ee9c87bc0c66f7aefc2e760323cfc2.png

 图19 EF面之间的距离变化范围

动态轮廓度和复合轮廓度

我们来探讨一下动态轮廓度和复合轮廓度之间的异同。

本篇文章将分3个部分来探讨:

1. 平移和偏置

2. 平面的复合轮廓度和动态轮廓度

3. 曲面的复合轮廓度和动态轮廓度

一. 平移和偏置

在探讨之前,我们首先来认识两个重要的动词,“平移”(Translate)”和“偏置(Offset)”。

      平移,就是将特征上所有的点平行移动形成新的特征。相当于我们大学力学概念里的平动(还有一个不同的运动是转动),其中移动的过程中不能旋转。假设我们把一个圆弧往上平移2毫米,具体见下图。

d9cb803aab641a178a282f8d6cb29825.png

图1 平移

从图1中我们可以看出,平移后的曲线和原来的曲线形状大小一样,曲率半径没有发生变化,但是圆心的位置发生了变化(2毫米)。

偏置,就是将特征上所有的点向法向方向移动一定距离后形成新的特征。很多3D软件里有一个命令“Offset”,指的就是这个偏置操作。假设,我们把同样一个圆弧往外偏置2毫米,具体见下图:

7c60739519a9a9d1e5b14ab9ea2771ec.png

图2 偏置

 图2就是将同样的圆弧偏置后形成的新的圆弧。我们可以看出其特点,如果将半径为15的圆弧“往外”偏置2毫米后,该圆弧的曲率半径变化了,由原来的R15变成偏置之后的R17,但是圆心的位置没有变化,也就是说偏置有“放大”或者“缩小”特征的能力。

大家如果仔细比较一下图1中的平移和图2中的偏置这两个动作,我们会发现2个特点:

1. 平移不会改变曲率半径,但会改变圆心位置;偏置会改变曲率半径,但不会改变圆心位置。

2. 偏置尽管会改变曲率半径,但是经过偏置改变曲率半径后的新圆弧和偏置之前的圆弧的视觉“相似度”很高(观察图2)。而平移前和平移后的视觉相似度却不高(观察图1)。

有关平移和偏置的这个特点,我们把它称为平移偏置常理1。

      当然,也有一种情况,平移和偏置没有区别,那就是当平移和偏置的对象是直线或者平面时,具体见下图:

403944d836c0b87e5856f457cc2f35f1.png

图3 平移和偏置

显然,从图3可以看出,对直线或者平面进行偏置或者平移后,两者没有任何区别。这是因为直线或者平面的曲率半径为无穷大。平移本身不能改变曲率半径,而偏置也不能改变曲率半径。

当对平面或者直线进行平移和偏置处理时,两者没有任何区别。这种现象我们在本篇文章里把它称为平移偏置常理2。

我们为什么要讨论平移和偏置这两个貌似无聊的动词呢?因为轮廓度公差带的边界就是由这两个动作形成的。理解了这两个动词的本质,我们就能够更加深入的理解复合轮廓度和动态轮廓度。

一. 平面的复合轮廓度和动态轮廓度

提起复合轮廓度,往往给人的感觉就是高大上,还可以用来装逼(那些趾高气扬的面试官就经常不怀好意地拿复合轮廓度来考核面试者)。今天我们好好认识一下高逼格的复合轮廓度。

复合轮廓度事ASME标准特有的术语,ISO和国标是没有的。它其实非常简单,就四个字“基准阉割”。它阉割的对象是复合轮廓度第二行和第二行以下的所有基准,让这些被阉割的基准只能约束公差带的方向,不能约束位置。

      我们举个例子来认识基准是如何被阉割的。

912d85d46ddf90a49cd00a5f010635a8.png

图4 复合轮廓度和公差带

     图4中的轮廓度就是复合轮廓度。它有两行,且两行都共享一个轮廓度符号(凡是几行共享一个轮廓度符号的轮廓度都叫复合轮廓度)。

既然有两行,所以复合轮廓度中第一行和第二行都有自己的公差带,具体见图4中的下图。紫色的公差带是第一行的公差带。复合轮廓度第一行的公差带是正常的,它必须和基准A保持理想的方向和位置关系,即紫色的公差带必须要和A绝对平行,而且紫色公差带的中心必须和基准A保持绝对的22的距离。

      复合轮廓度的关键在于分析第二行的公差带(图4中蓝色的公差带)。我们说了,第二行的基准A是被“阉割”过的(注意,定义就是这样的,它命不好),它只能约束蓝色公差带的方向,不能约束公差带的位置。即宽度为1的蓝色公差带只需要和A保持方向关系(绝对平行),不需要保持位置关系,也就是说,理论尺寸22对蓝色公差带没有意义,蓝色的公差带可以上下浮动。

b77281dee47aa746c2c36e18627ebabe.png

A

e7bb61989ba0394e310520f1d2a529f1.png

B

fa598c8d9f96e7339af15a35e2a4dc23.png

C

图5 复合轮廓度公差带的变化趋势

见图5中的A,B,C图,第二行蓝色的公差带宽度为1,可以上下任意平移。被测特征要合格的话,必须满足以下两个条件:

1. 第一行紫色公差带和第二行蓝色公差带有交集(如图5 A,B,C中的阴影部分)

2. 被测要素(实际被测表面)必须落在交集以内

相信有很多小伙伴到这里感到不对啊,第二行蓝色的公差带可以上下浮动,它和平行度不是一样的吗?

没错,第二行确实是和平行度一样。

b60a966b29745d7349b11a521ccd9c14.png

图6 复合轮廓度和平行度

这里的复合轮廓度第二行和平行度真的完全一样,因为他们的本质都是要求公差带必须要和基准保持理想的方向关系。

      我们再来看看平面的动态轮廓。我们上一篇文章讲过了,动态轮廓度相当于偏置量为任意值的非对称轮廓度。

b3804ac0fcab1b6298b563a68282fd34.png

图7 动态轮廓度和公差带

图7中,因为动态轮廓度公差带宽度为1,且偏置量为任意值。所以公差可以上下任意偏置,根据平移偏置常理2,它其实和平移是一样的效果。所以图7中的动态轮廓度也相当于平行度,它也和复合轮廓度第二行的要求是一样的。

      所以在本案例里边,复合轮廓度和动态轮廓度表达的对零件的要求是一样的。

02c3e708d98b2cb69a416a7daa53c647.png

图8 复合轮廓度和动态轮廓度

图8表达了复合轮廓度等同于动态轮廓度的一个特殊的案例。这个案例说明复合轮廓度和动态轮廓度也有等同的时候,那就是因为平移偏置常理2。

注意,复合轮廓度和动态轮廓度等同的前提是被测面是平的。

而绝大部分情况下,复合轮廓度和动态轮廓度是不等同的。当被测表面是曲面(真正弯的那种曲面)的时候。

一. 曲面的复合轮廓度和动态轮廓度

1. 曲面的复合轮廓度

      我们在知道平面的复合轮廓度公差带的特点后, 基于同样的原理,再来理解曲面的复合轮廓度就没那么困难了。直接上图:

d5a3623e0d8eebad56d15e4a45d626a3.png

A. 图纸标注

41d647b9cf711aaf9374f20ea6e5d6b9.pngB. 复合轮廓度公差带

图9 曲面复合轮廓度

同样的逻辑,第一行公差带是由两段半径分别为R41和R39的紫色圆弧组成,这个紫色的圆弧是由理论轮廓(半径为R40)内外各偏置1形成的。基于轮廓度的定义,这个紫色的公差带必须要和基准系ABC保持理想的方向和位置关系,显然,这时该公差带的六个自由度全部被基准系ABC锁死。

而图9中复合轮廓度第二行的公差带,它的两个边界半径分别为R40.5和R39.5(蓝色圆弧),这两个蓝色边界是由半径为R40的理论轮廓内外各偏置0.5形成,具体见图9中的B图。

又因为在复合轮廓度中,该第二行所有基准被阉割(即基准仅具备定向而无定位作用), 所以蓝色公差带只需要和A,B,C保持方向关系,公差带和A绝对垂直,和B,C保持与数模一样的方向关系,不需要保持位置关系。

也就是说第二行蓝色的公差带可以上下左右任意平移,但不能旋转。 最终,被测曲面要合格,同样满足下面两个条件:

1. 第一行紫色公差带和第二行蓝色公差带有交集

2. 被测要素(实际被测表面)必须落在交集以内

      多说无益,具体看以下图例:

3b11e6367dcc61876b452f2293efcf62.png

图10 第二行公差带(蓝色)可以往上移

648d8fef08a1cb817dfe3cc3dcd267c9.png

图11 第二行公差带(蓝色)可以往下移

需要注意的是,图11中,蓝色的公差带是可以超出紫色公差带的(再强调一遍,是公差带可以超出,被测要素不能超出!),而只要实际轮廓(即被测要素)能够落在紫色公差带(第一行)和蓝色公差带(第二行)的交集里边,说明该实际轮廓就满足该复合轮廓度要求。

746375658e221a663d13ecebf5b3455b.png

图12 不应该出现的公差带(蓝色)旋转

图12中,就是我们一再强调的,图9A中的复合轮廓度第二行的蓝色公差带,它必须和基准ABC保持理想方向关系,不能旋转,不能旋转! 图12中出现公差带的旋转是不允许的。

好了,到这里我们阐述了复合轮廓度公差带的特点,尤其是第二行(第一行和普通轮廓度一样,没啥特殊的),我们再稍微回顾一下重点:

1. 复合轮廓度每行(重点是第二行或以下)公差带的两个边界的半径是一定确定的,因为它们是由理论轮廓内外各偏置固定数值(半个公差带)后形成的。比如本案例中,复合轮廓度第二行蓝色公差带的两个边界的半径是R39.5和R40.5,它们是由理论轮廓R40内外各偏置0.5形成的。

      2. 复合轮廓度第二行蓝色公差带的两个边界半径尽管一样,但是因为位置可以上下左右平移,那么这两个蓝色圆弧边界的圆心,可以和理论轮廓的圆心同心,但绝大多数时候他们是不同心的。见下图:

d33f906965b575cb7e5afda01248c039.png

图 13 公差带边界圆心和理论轮廓不同心

复合轮廓度第二行及以下公差带的特点是,先偏置(形成公差带),再平移(基准阉割)。

为什么要无聊的在这里强调上面两个明显的特点呢?

因为上面两个特点正是和动态轮廓度本质上不一样的地方!接下来,我们再来看看动态轮廓度的特点。

2.曲面的动态轮廓度

      在本公众号前面一篇文章《非对称轮廓度与动态轮廓度》中讨论了动态轮廓度公差带的形成,为了更好的理解动态轮廓度,我们仔细来讨论一下它公差带的特点:

74f7b56844cd3e5f793fca3026e9462e.png

图 14 动态轮廓度

      图14中采用了轮廓度加动态轮廓度来控制被测零件的曲面。本节专门讨论第二行的动态轮廓度公差带。它的公差带如下图:

31fd7052ef252ed6979c8584806c30df.png

 15 动态轮廓度公差带

图15中,动态轮廓度公差带, 是由两段半径分别为Re和Ri的蓝色圆弧组成,这两个蓝色圆弧是由理论轮廓偏置而来。

动态轮廓度的奇葩之处在于:

1. 公差带是由理论轮廓偏置而来,但是偏置量可以为任意值!即公差带的两个蓝色边界的半径大小(Re和Ri)不像复合轮廓度那样是固定值, 两个半径Re和Ri可以为任意值

2. Re和Ri之差必须是1(公差带宽度),即Re - Ri = 1

      基于图14,我们再来看动态轮廓度公差带几个可能的情形:

0b70354be108d76ff9e1c20a7c74dfa0.png

图 16 动态轮廓度公差带(一)

f44b0e02d80af0edad460a794d541126.png

图 17 动态轮廓度公差带(二)

如果我们仔细观察动态轮廓度,再和复合轮廓度作比较,我们会发现,它的轮廓度貌似和复合轮廓度一样,可以上下“动”。但是动的特点不一样,

复合轮廓度的移动,它是因为公差带(第二行及以下)的位置不受任何基准的约束,所以公差带可以动,这个“动”,站在运动的角度,这叫“平移”,公差带的平移,当然会导致公差带圆心的平移, 所以公差带圆心和理论轮廓的圆心是不重叠的。

而动态轮廓度的动,不是平移,是偏置,不定量的“偏置”,即是“放大”或者“缩小”的过程。不过因为是偏置的动作,所以动态轮廓度的公差带的圆心永远和理论轮廓的圆心同心。

      两者特点具体见下图:

99464c1a01ffcd9c2ba7ff3b641a04fb.png

图18 复合轮廓度和动态轮廓度的差别

好了,到这里我们关于动态轮廓度的解释就暂时结束了。不过我们还是需要在这里重点强调的是:

复合轮廓度第二行及以下的公差带,它的公差带是由理论轮廓偏置形成的,偏置量是公差带大小的一半,但是偏置形成后的公差带是可以平移的,任意平移,直到能够把实际被测要素(被测表面)框进去为止。

而动态轮廓度的公差带,也是由理论轮廓偏置后形成的,偏置量可以为任意值,但它要求公差带两个边界偏置量之差为固定值,即为公差带的大小,只要形成的公差带能够把被测要素(被测表面)框进去就行。

本章小结

本篇文章分三个章节仔细探讨了复合轮廓度和动态轮廓度各自的特点。第一章节着重强掉“平移”和“偏置”两个不同的动作。第二章节则强调了对于平面来说,复合轮廓度和动态轮廓度是没有区别的,因为对平面来说,偏置和平移没有区别。第三节则强调被测要素是曲面时,复合轮廓度和动态轮廓度是有区别的,公差带各自的特点不一样,复合轮廓度的圆心相对于理论轮廓的圆心可以移动,而动态轮廓度的圆心相对于理论轮廓则不会移动。

动态轮廓度-真正的相似之美

下面文章将结合实际工程应用继续深入讨论两者的区别。

同样,下面文章将分三个小节来探讨。

1. 复合轮廓度的实际应用

2. 复合轮廓度的“伪相似”性

3. 动态轮廓度-真正的相似之美

1. 复合轮廓度的实际应用

在汽车行业,感知质量是一个非常重要的指标,它往往会决定用户是否愿意掏钱包来买这辆车。比如图1中所示某国产品牌车,前车门和翼子板之间的缝隙Gap就是感知质量的指标之一:

cbfe7ecf304b7d6727cdd8aead2ccf37.png

图1 翼子板和前车门之间的缝隙Gap

      由于用户对这个缝隙Gap(该车型的理论值Gap=3)的大小并不敏感, 见图2和图3, 所以就该项DTS(尺寸技术规范)要求而言,要求相对不高;但是用户对缝隙的均匀度很敏感,所以该缝隙的平行差(最大缝隙和最小缝隙之差)要求会更高一些。具体见图4:

e973183b8ef056c4c4cdcc501fda19a8.png

图2 理论要求Gap=3

e3faae3ba5fb0387f6d7347ac7d10d04.png

图3 用户对缝隙的大小不敏感

d34ec219f1b745cc2eb87ea6bbb1767a.png

图4 用户对缝隙的均匀度敏感

基于上面的分析,所以主机厂在定义该缝隙的DTS的时候,通常有两个要求,一个是缝隙的大小,一个是缝隙的均匀度。由于尺寸工程的能力不同,每个主机厂对这个缝隙的误差要求会不一样,往往牛逼的主机厂定义更加严格,当然,要求严格的后果就是生产出来的整车,看起来舒服,逼格也显得更高。

假设某主机厂对图1中的该缝隙定义如下:

  1. 缝隙大小:Gap = 3±1

  2. 缝隙平行差:Gap// =Gap_max - Gap_min ≤ 1.2

我们知道导致该Gap产生误差的误差源有很多,比如每个零件的制造误差,工艺误差(如焊接误差),装配误差等等。本篇文章仅以前车门为例,来讨论如何控制前车门的相关轮廓。

      一方面为了保证缝隙的大小要能满足要求,另外一方面又要保证缝隙的平行差能满足要求,对前车门而言,行业内通常比较经济合理的标注如下(简单示意图):

2ee931a0ca7f33fe077931c604ba7358.png

图5 前车门采用复合轮廓度

图5采用复合轮廓度对前车门的相关轮廓进行管控,如果对复合轮廓度的概念还不清楚的小伙伴,建议点击文章最后的相关链接回顾以前的文章。

根据复合轮廓度的定义,图5中红圈部分第一行的公差带和基准系ABC保持理想的方位(方向和位置)关系,宽度为1的公差带相对基准系ABC是不动的(见图6)。

1020b2395bbfa412c7268e96ab41f70b.png

图6 第一行公差带

      只要前车门的实际被测轮廓落在图6中宽度为1的红色公差带以内就是合格的。那么设计者这样控制前车门的轮廓对整车的DTS, 也就是缝隙Gap,有什么影响呢?见图7:

1c98a1876714c8de55007ec7104d989b.png

图7 第一行公差带对DTS的影响

我们首先做几个假设,假设翼子板的轮廓是理想的,没有装配误差,没有焊接误差。也就是说,唯一的误差源是来自前车门的轮廓误差(当然,尺寸工程师要进行实际的公差分析,这个假设是一定不能做的,要综合考虑所有可能的误差源,为了能更好解释问题,本篇文章做了简化处理)。

具体见图7, 3D数模上的理论间隙为3(Gap_T=3),基于复合轮廓度第一行公差带的定义,在零件合格的前提下,我们不难得出,前车门和翼子板之间的缝隙有以下特点:

1. 最大缝隙Gap_max = 3+0.5= 3.5

2. 最小缝隙Gap_min = 3-0.5 = 2.5

如果没有第二行的复合轮廓度,不难得出,翼子板和前车门之间的平行差为:

Gap_// = Gap_max -Gap_min = 1

      我们再来看看复合轮廓度的第二行公差带。见图8,根据复合轮廓度的定义,第二行轮廓度的公差带仅仅需要和基准系保持理想的方向关系(注意,是方向,方向,不是方位),也就意味着第二行的公差带可以平移,不能旋转。

035abd99e92f0f94fcac1c4ed906da51.png

图8 复合轮廓度第二行公差带(0.6)

我们刚刚说过,复合轮廓度第二行宽度为0.6的公差带可以平移(就是平行移动)。那么这个可以任意“平移”的公差带,对整车的DTS有什么影响呢?

da165fb2700f9aaf7e9d03843b10e141.png

图9 第二行公差带(0.6)对DTS的影响

通过图9的示意图,我们可以看出,因为复合轮廓度第二行的公差带可以任意“平移”,那么就意味着,第二行不能管控公差带的位置,对DTS来说,缝隙的大小,第二行的公差带是起不到任何管控作用。

但是,就是因为第二行的公差带可以任意“平移”,就要求前车门的实际轮廓一定要全部落在这个可以任意平移的公差带里边才能合格。既然,前车门的实际轮廓必须在公差带里,从图9不难看出,这回导致整车的最大缝隙Gap_max和最小缝隙Gap_min之差,一定不会大于0.6,即缝隙的平行差被控制了,则有:

Gap// = Gap_max - Gap_min ≤ 0.6

可以看出,因为有了复合轮廓度的第二行,前车门和翼子板之间的缝隙的平行差被加严了(如果仅仅依靠第一行来控制,刚刚计算的结果是平行差为1)。

如果平行差被控制了,不管公差带怎么平移,前车门和翼子板之间的缝隙看起来都会很“均匀”,用户看起来也会舒适。我们再把这个移动的公差带,放在车身上来看看效果:

03deeff4a89db836a652581a4146d598.png

图10 公差带往左平移

6b4c9a33fb378332fff4cd7404806ef1.png

图11 公差带往右平移

结合图10和图11,我们会看到,只要公差带不旋转,无论复合轮廓度第二行的公差带怎么平移,因为实际轮廓都必须在第二行的公差带里,这就会让前车门和翼子板之间的缝隙看起来始终保持“均匀”,也就是说,前车门和翼子板之间的缝隙平行差,即最大缝隙和最小缝隙之差被管控了。

注意,再次强调,复合轮廓度的第二行只管控前车门和翼子板之间缝隙的最大缝隙和最小缝隙之差(注意,是差值,差值),但是至于最大的缝隙和最小的缝隙,第二行是不能管控的(因为它的公差带可以平行移动的)。

那么谁在管控这个缝隙的大小呢?当然是第一行了,前面我们刚讲过。

好了,说到这里,我们再回过头来看看,前车门标注的复合轮廓度后,每一行的功能,见图12。

d5e6ae327ed1fa0cccf176475201fd1f.png

图12 复合轮廓度的功能

到这里为止,我们介绍了复合轮廓度的实际应用案例。总结一下复合轮廓度控制平行差的原理:当把一个轮廓“平移”后,平移之后的轮廓和平移之前的那个轮廓具有一定的相似性,所以图10和图11中的缝隙看起来始终均匀,用户从外观看起来也比较舒适,逼格也就更高。

这种因为“相似”会带来的“均匀”,从本质上讲,是人们的潜意识里都喜欢“有序”的安排和设计,而非无序的凌乱。这样的案例有好多,比如前车灯和前保,翼子板,发盖之间的缝隙,各大主机厂的工程师们都在竭力保持其缝隙均匀度(即平行差)。见图13。

2415f65e9e11b68666e93f53c24a3c40.png

图13 车灯处的相似性要求

所以,我把这种现象称为“相似之美”。复合轮廓度就能在一定程度上保证这种“相似之美”。

然而,复合轮廓度在保证轮廓的“相似性”上并不完美,它所保证的相似其实是一种“伪相似”,我们接下来进入第二节。

2. 复合轮廓度的“伪相似”性

      我们刚刚讲过,复合轮廓度是通过平移曲面或曲线,使得平移之前和平移之后的曲面或曲线具备一定的相似性。这个对那种曲率半径很大,或者非常平坦的曲面来说,确实有效。比如图14:

fd1e81b23a5dff6ffb5960265fed000a.png

图14 平移带来的相似性

注意图14体现的是新特征(平移之后)和原始特征(平移之前)的相似性。而在复合轮廓度里边,我们讨论的是公差带边界和原始轮廓具备相似性,比如我们刚刚讨论的前车门的轮廓,公差带的两个边界就和理论轮廓保持相似性。

又因为被测面的实际轮廓必须落在两个“相似”的公差带边界之间,所以公差带边界的相似程度,也能决定实际轮廓的相似程度。见图15:

91ca228693f18270560887f66fa2a12a.png

图15 平移带来的公差带和理论轮廓相似

注意,图15中,翼子板的理论轮廓和前车门的理论轮廓在设计外形时一定是相似的。所以前车门的复合轮廓度第二行公差带,尽管可以平移,但是两个公差带边界(洋红色的线)还是和翼子板轮廓(蓝色线)保持一定的相似性。又因为实际轮廓,必须在洋红色的公差带里,所以实际轮廓和翼子板轮廓也具备很大程度的相似性。

但是,对于那种曲率半径比较小的轮廓,用复合轮廓度控制能保持相似性吗?

答案是,不能。为啥?直接看图16吧:

7aaebbc6e1dda985fcf277d0677d0d45.png

图16 平移不能带来轮廓的相似性

很明显,图16中,将半径为R15的轮廓,往上平移2后(注意,整个过程没有旋转),我们会发现,平移后的轮廓和平移之前的轮廓之间并不能保持相似性,如果需要缝隙均匀,通过对图16的观察我们发现,它根本就不能保证缝隙均匀。

所以说,复合轮廓度带来的相似其实是一个“伪相似”。

还有,更要命的是,对于那种全封闭或者半封闭的特征,如果要保持相似性,复合轮廓度是没有任何办法的。

先来看看一个案例,见图17:

4de13d0d2986143a61b54e3404a09e47.png

图17 加油盖的要求

图17显示的是汽车上的加油盖。DTS对加油盖和侧围之间的整圈缝隙Gap不仅仅大小有要求,而且平行差也有要求(即要求缝隙均匀)。

      因为涉及到缝隙的均匀性,我们故技重施,再用复合轮廓度控制加油盖周边,看看能不能达到控制缝隙均匀性(平行差)的目的,见下图:

58c70ecdb2a690e9d638b29f3e4da565.png

1. 图纸标注

7a2a8952ed66725f6b1fe1016207c3d1.png

1. 公差带

图18 复合轮廓度和公差带

我们分析过,图18中复合轮廓度的第一行公差为1的轮廓度,它是控制加油盖和侧围之间缝隙的大小,这不是我们的重点。我们重点研究第二行,公差为0.6的轮廓度。

见图18中的公差带,根据复合轮廓度的定义,0.6的公差带可以上下左右任意平移(当然并不是无限嚣张的平移,0.6的公差带必须要和第一行的公差带在全周上有交集)。公差带可以任意平移,那么加油盖的实际轮廓为了能够落在0.6的公差带里边,它也需要任意平移,那么加油盖实际轮廓平移后的后果是什么呢?见图19:

1d4171746a3d39381c0def1515dbefeb.png

图19 平移后的加油盖轮廓

仔细观察图19,因为复合轮廓度第二行公差带可以平移,所以实际轮廓实际上也允许平移。平移后,我们发现间隙A处(加油盖上侧)缝隙均匀,间隙B处(加油盖下侧)的缝隙也是均匀的。

但是从DTS的角度看,用户仅仅希望间隙A处均匀,或者间隙B处也均匀就OK了吗?

当然不是,用户的感知是希望加油盖周围一圈的缝隙都要均匀!也就是要求间隙A的和间隙B的缝隙差不能太大,最好相等!

然而,如果我们对加油盖的周边用复合轮廓度控制的话,我们会发现图19中的现象,在加油盖的实际轮廓满足复合轮廓度要求的前提下,加油盖和侧围之间的单侧缝隙是均匀的,但是上侧的缝隙和下侧的缝隙相互之间不均等,出现了“厚此薄彼”的现象。

一句话,图19的外观效果让用户感觉非常不爽,因为上下缝隙不均等把整车的品味拉低了(山寨货才这样)!

这就是复合轮廓度的无奈之处。

好了,我们再总结一下复合轮廓度的特点:

1. 对于曲率半径非常大的轮廓(比如平面),采用复合轮廓度可以有效的控制相似性。但它是一个“伪相似”,当被测面的曲率半径比较小的时候,这个缺点就非常明显,甚至,复合轮廓度根本就不能控制相似性。

2. 对于半封闭或者全封闭的图形,复合轮廓度控制周圈缝隙的均匀性更加不在行,它让公差带可以平移,必然会产生图19中“厚此薄彼”的效果。

      到这里,有的小伙伴可能会一狠心,我偏不要定义那种啰里吧嗦的什么复合轮廓度,我就一个轮廓度可以搞定,见下图标注:

a9dd933f9c4c410bfce6aac4ec7c6fbe.png

图20 用单个轮廓度控制加油盖周边

图20中的标注能够保证缝隙的均匀度吗?当然可以!就一个标注,不仅仅能够管控缝隙的大小,还能够管控缝隙的均匀度。

那为什么还需要采用那些啰嗦的标注呢?

图20的标注不仅仅加严了缝隙的均匀度要求,还加严了缝隙的大小要求。问题是,用户并不太在乎缝隙的大小是多少,比如2-4毫米的缝隙,用户都能够接受(他还以为是设计者故意设计成那样的),唯一不能接受的是缝隙不均匀,一边大一边小。既然用户不在乎缝隙的大小,我们设计时一厢情愿的强制加严要求,从逻辑上讲,这本身就是一种不合理的浪费。

所以本期文章讨论的出发点是,在保证功能的前提下,如何经济的设计零件(成本,成本,成本!)。

回到我们的主题,在能够保证加油盖周边缝隙均匀的前提下,如何经济的设计加油盖呢?

这时,我们的主角登场,动态轮廓度,它就能完美的解决这个问题。

3. 动态轮廓度-相似之美

首先在这里强调,是ISO标准首先提出来OZ这个“未定义偏置量”的轮廓度修饰符,完美的解决了相似性问题。后来ASME标准委员会的那帮老头子们心里一定懊恼万分,尽管万分不情愿,还是提出了“动态轮廓度”这个概念来填补复合轮廓度的缺点,并采用修饰符号△(实际上是一个更加尖的三角形)。

以上内容是我YY出来的,小伙伴们不必当真。

言归正传,提到动态轮廓度,我们马上会想到“偏置”(offset), 它的特点是公差带是偏置形成的。 

    我们的前一篇文章还一再强调“偏置”的特点,见下图:

80173d35eef92800d15e1c0ed1c34321.png

图21 “偏置”带来的相似性

偏置的特点是,曲线的曲率半径在偏置2毫米后会发生变化(从R15变到R17),但是偏置之后曲线的圆心位置和偏置之前原始轮廓的圆心是一样的。明显的,尽管曲率半径发生了变化,但是偏置之后的曲线和偏置之前的曲线明显具有完美的相似性,见图21右图中两条圆弧曲线。

一句话,把偏置之前的轮廓和偏置之后的轮廓摆在一起,用户看起来就是舒适,有格调。

      那么对刚刚讨论的加油盖问题,如何采用动态轮廓度标注才能保证缝隙均匀呢?

2c3d3b266da674ade40e704f07444af5.png

图22 动态轮廓度标注

见图22中采用的动态轮廓度标注,第一行的目的是为了管控缝隙的大小,第二行动态轮廓度的目的是为了管控缝隙的平行差(均匀度)。

      第二行(红圈处)为什么能够管控加油盖周边缝隙的平行差呢?我们先来看看动态轮廓度公差带的特点,见图23。

61463d8e5d6506a5471a4406d5f87766.png

图23 动态轮廓度公差带的特点

图23显示的是动态轮廓度公差带的特点,本公众微信号的前几篇文章讨论过,动态轮廓度的公差带是基于理论轮廓“偏置”而来(理论轮廓必须和基准保持理想的方位关系),见图23中的红色公差带,它实际是允许图23中红色的公差带等比例任意“放大”或者“缩小”,而不是平移。(对动态轮廓度和复合轮廓度的基本概念还不太熟悉的小伙伴,请点击文章最后的链接“动态轮廓度和复合轮廓度”)。

当然,动态轮廓度公差带的“放大”和“缩小”不是无限的,它必须要和图22中的第一行轮廓度在全周上有交集。这就是为什么动态轮廓度不会单独使用的原因。

      既然图23中动态轮廓度红色的公差带边界可以任意放大和缩小,那么加油盖的实际轮廓也可以任意“放大”和“缩小”。这个放大和缩小,对加油盖周边的缝隙有什么影响呢?

bc16e6f26eb69d05a2a2d4d4b8b95f8c.png

图24 轮廓“放大”或“缩小”后对缝隙的影响

观察图24,因为动态轮廓度的特点,加油盖上允许“放大”或“缩小”后的实际轮廓,尽管会影响缝隙的大小,但是它对缝隙的均匀度不会产生不利影响。不仅仅间隙A和间隙B各自的缝隙均匀,而且间隙A和间隙B相互之间的缝隙也相对均匀,甚至周边一整圈的缝隙都是均匀的。

同样,假设侧围的轮廓理想,忽略所有的总装和工艺误差,仅仅考虑加油盖轮廓误差的话,加油盖周边的最大缝隙和最小缝隙之差一定不会超出0.6.

See? 这就是动态轮廓度最大的特点,它才能保持真正的相似之美!

实际上,不仅仅加油盖,前面案例中的前车门的轮廓,也可以采用动态轮廓度来控制,它能更好的保证缝隙的均匀性。

好了,本期的文章就到这里了,希望对您有所收获。

本文小结

本期文章主要探讨了复合轮廓度和动态轮廓度在实际工程中的应用。文章分为三个小节,第一小节主要探讨复合轮廓度在控制缝隙均匀性的应用,比如车门和侧围之间缝隙。第二小节指出了复合轮廓度控制缝隙均匀度时的“伪相似”性,尤其是针对曲率半径比较小或者半封闭和全封闭的曲面,复合轮廓度控制相似性的效果就会很差,比如加油盖和侧围之间的缝隙。第三小节提出动态轮廓度的特点,并指出只有动态轮廓度才能真正的保证相似之美。

在这里要感谢比亚迪的华武工程师,他和我探讨了这个汽车行业中加油盖缝隙控制的实际问题,经过一番讨论我们才得出一致的结论,并不得不对ISO中的OZ另眼相看(后来美标提出同样的概念,动态轮廓度)。

最后再说明一下,汽车上间隙的控制涉及到很多因素,除了零件的制造误差,还有定位策略,工艺,装配,孔销浮动等等误差,这使得尺寸工程的工作非常复杂。本文只是从单一的最底层的零件制造误差对DTS带来的影响做了讨论,而非尺寸工程本身,希望各位小伙伴能够理解。

推荐阅读:GD&T干货 ||关于非对称轮廓度如何应用?

af32352edc97edb5f046269964165a95.png版权声明:本文来源于网络,如若有版权问题,请联系,会立刻删除;

e3e5ff4c31de99a7102183b946c29fd1.png

                             小编微信:SZ18556807248

 更多问题,请添加小编微信,添加时请备注好:公司+职位+姓名

智慧汽车供应链五群 941135777  GD&T专业群:232776212

9767ca5539c730a4137435d1580ce965.png

点击阅读原文,报名苏州站十八期GD&T课程!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值