
CloudData
文章平均质量分 88
好奇新
好奇心才是原动力
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机械革命开启Hyper-V安装Docker无限蓝屏(已解决)
BIOS版本升级,只需要管理员身份运行F.bat脚本即可。接下来就是等待脚本自动运行重启,如遇到蓝屏问题,及时询问官方客服。安装Docker时会蓝屏,起初以为是docker/系统问题,后来经过仔细的检查,发现是只要开启虚拟化就会蓝屏,再检查好像硬件虚拟化有点问题,一番查找之后方知是bios的问题。参考https//blog.csdn.net/wujuncheng1996/article/details/118438161。官方地址https//www.mechrevo.com/service/...原创 2022-07-27 15:49:10 · 3682 阅读 · 0 评论 -
数仓建模—指标体系
数仓建模—指标体系指标体系指标建设过程中遇到的问题指标建设方法论北极星指标人货场指标体系OSM+UJM 模型OSM+ AARRR海盗模型指标分级方法指标的构成指标分类简单计数型指标复合型指标基础指标衍生指标指标分级公司战略层面指标业务策略层面指标业务执行层面指标如何设立指标体系为什么要建立数据指标体系如何建立指标体系 OSM 模型知乎的例子滴滴的例子提高GMV(Gross Merchandise Volume)非标住宿指标衡量的是什么如何有效衡量“什么”如何衡量指标的好坏明确业务目的 确定核心指标工具类业务转载 2021-12-20 17:46:37 · 2634 阅读 · 0 评论 -
全链路监控(一):方案概述与比较
全链路监控(一):方案概述与比较0 问题背景1 目标要求2 功能模块3 Google Dapper3.1 Span3.2 Trace3.3 Annotation3.4 调用示例4 方案比较4.1 探针的性能4.2 collector的可扩展性4.3 全面的调用链路数据分析4.4 对于开发透明,容易开关4.5 完整的调用链应用拓扑4.6 Pinpoint与Zipkin细化比较4.6.1 Pinpoint与Zipkin差异性4.6.2 Pinpoint与Zipkin相似性4.6.3 字节码注入 vs API 调转载 2021-12-02 16:53:25 · 752 阅读 · 0 评论 -
尚硅谷数据仓库实战之1项目需求及架构设计
数仓笔记数据仓库和数据集市详解:ODS、DW、DWD、DWM、DWS、ADS尚硅谷数仓实战之1项目需求及架构设计尚硅谷数仓实战之2数仓分层+维度建模尚硅谷数仓实战之3数仓搭建原创 2021-12-01 16:27:26 · 4336 阅读 · 0 评论 -
尚硅谷数据仓库实战之2数仓分层+维度建模
数仓笔记数据仓库和数据集市详解:ODS、DW、DWD、DWM、DWS、ADS尚硅谷数仓实战之1项目需求及架构设计尚硅谷数仓实战之2数仓分层+维度建模尚硅谷数仓实战之3数仓搭建原创 2021-12-01 16:33:41 · 2404 阅读 · 0 评论 -
尚硅谷数据仓库实战之3数仓搭建
@TOC数仓笔记数据仓库和数据集市详解:ODS、DW、DWD、DWM、DWS、ADS尚硅谷数仓实战之1项目需求及架构设计尚硅谷数仓实战之2数仓分层+维度建模尚硅谷数仓实战之3数仓搭建尚硅谷数据仓库4.0视频教程B站直达:2021新版电商数仓V4.0丨大数据数据仓库项目实战百度网盘:https://pan.baidu.com/s/1FGUb8X0Wx7IWAmKXBRwVFg ,提取码:yyds 阿里云盘:https://www.aliyundrive.com/s/F2FuMVePj9原创 2021-12-01 16:34:34 · 3793 阅读 · 0 评论 -
数据仓库和数据集市详解:ODS、DW、DWD、DWM、DWS、ADS
@TOC数据流向应用示例何为数仓DWData warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。目前行业比较流行的有:AWS Redshift,Greenplum,Hive等。数据仓库并不是数据的最终目的地原创 2021-11-30 15:08:11 · 18824 阅读 · 0 评论 -
浅谈数据埋点
浅谈数据埋点|0x00 如何理解埋点|0x01 埋点的技术方案|0x02 埋点的流程规范|0xFF 行业现状|0x00 如何理解埋点埋点是数据采集的专用术语,在数据驱动型业务中,如营销策略、产品迭代、业务分析、用户画像等,都依赖于数据提供决策支持,希望通过数据来捕捉特定的用户行为,如按钮点击量、阅读时长等统计信息。因此,数据埋点可以简单理解为:针对特定业务场景进行数据采集和上报的技术方案。数据埋点非常看重两件事,一个是数据记录的准确性,另一个则是数据记录的完备性。先讲数据的准确性。数据埋点非常强调规转载 2021-11-23 15:25:47 · 1318 阅读 · 0 评论