LangChain4j如何自定义文档转换器实现数据清洗?

LangChain4j 提供了 3 种 RAG(Retrieval-Augmented Generation,检索增强生成)实现,我们通常在原生或高级的 RAG 实现中,要对数据进行清洗,也就是将外接知识库中的原数据进行噪音去除,留下有价值的信息。

例如在带有 HTML 标签的文本中,HTML 标签就是噪音,他对于搜索结果是没有任何帮助,甚至会影响查询结果的,因此我们就需要将 HTML 标签进行清除。

那问题来了,怎么进行数据清洗呢?

这就要使用到文档转换器了,那么在不使用 LangChain4j 内置文档转换器的前提下(因为业务需求是复杂且多变的,因此很多时候我们需要使用自定义文档转换器才能实现预期的效果),那怎么实现呢?接下来一起来看。

自定义文档转换器

以去除文本中的 HTML 标签为例,LangChain4j 中自定义文档转换器的实现步骤如下:

  1. 新建类实现 DocumentTransformer 接口。
  2. 重写 transform 和 transformAll 方法,前者是对 Document 对象进行文档转换,后者是对 List 进行数据转换。
  3. 在 transform 和 transformAll 方法中,实现数据清除的具体业务落地。

具体实现代码

import dev.langchain4j.data.document.Document;
import dev.langchain4j.data.document.DocumentTransformer;

import java.util.ArrayList;
import java.util.List;

/**
 * 自定义文档转换器
 */
public class HtmlToTextDocumentTransformer implements DocumentTransformer {
    @Override
    public Document transform(Document document) {
        return Document.from(removeHtmlTags(document.text()));
    }

    // 使用正则表达式清除内容中的 HTML 标签
    public static String removeHtmlTags(String html) {
        if (html == null || html.isEmpty()) {
            return "";
        }
        // 定义正则表达式,匹配所有HTML标签
        String regex = "<[^>]+>";
        // 替换所有匹配的标签为空字符串
        return html.replaceAll(regex, "").trim();
    }

    @Override
    public List<Document> transformAll(List<Document> documents) {
        List<Document> list = new ArrayList<Document>();
        documents.stream().forEach(document -> {
            list.add(this.transform(document));
        });
        return list;
    }
}

调用文档转换器

Document htmlDoc = Document.from(
        "<html><body><p>Clean <b>me</b>!</p></body></html>"
);

// 文档转换器
DocumentTransformer transformer = new HtmlToTextDocumentTransformer();
Document cleanedDoc = transformer.transform(htmlDoc);

System.out.println(cleanedDoc.text());

最终的执行结果为:

Clean me!

小结

文档转换器只是实现生产级别 RAG 的实现步骤之一,生产级别的 RAG 实现的步骤通常包含:文档加载器、文档解析器、文档转换器、文档分词器、文档向量化、向量持久化、向量检索等过程,而且每个过程可能都要反复调优,才能实现生产级别的准确性要求,所以道阻且长,吾辈尚需努力啊!

本文已收录到我的技术小站 www.javacn.site,其中包含的内容有:Spring AI、LangChain4j、Dify、Agent、MCP、Function Call、RAG、向量数据库、Prompt、多模态、向量数据库、嵌入模型等内容。

原创作者: vipstone 转载于: https://www.cnblogs.com/vipstone/p/18872586
内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
### LangChain4J 中实现自定义模型功能调用 在LangChain4J框架下,为了实现自定义模型的功能调用,通常会通过创建特定的`ToolSpecification`来封装所需调用的方法及其参数。此过程涉及定义工具名称、描述以及各个参数的信息。 对于自定义模型而言,假设有一个名为`CustomModelPredictor`的服务类,该服务负责接收输入数据并返回预测结果。下面展示了一个具体的例子,说明如何构建这样的工具规格: ```java // 定义用于指定参数类型的辅助方法 private static ParameterType type(String typeName){ switch (typeName.toLowerCase()){ case "string": return ParameterType.STRING; case "integer": return ParameterType.INTEGER; default: throw new IllegalArgumentException("Unsupported parameter type"); } } // 构建自定义模型调用的工具规格 ToolSpecification customModelSpec = ToolSpecification.builder() .name("custom_model_predict") // 工具名称 .description("使用自定义训练的大规模语言模型进行推理") // 描述 .addParameter( "input_text", type("string"), "待处理的文本字符串" ) // 添加参数 .build(); ``` 一旦完成了上述配置工作,则可以在应用程序逻辑中利用这个`ToolSpecification`对象来进行实际的功能调用操作。值得注意的是,在真实场景里还需要考虑异常处理机制和服务端点的安全认证等问题[^3]。 此外,当涉及到更复杂的交互流程时,可能还会引入代理(Agent)的概念,它能够协调多个不同类型的工具之间的协作关系,从而更好地支持业务需求。不过这部分内容超出了当前讨论范围内的简单示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值