微信中阅读,欢迎关注公众号:CodeFit,持续更新中。
🗓 2024 年 12 月
- 构建一个精品级别的 AI 基础知识框架课程。
- 课程简介,详见 [[AI101-A01|初识人工智能]]
引言
在 AI101-A02 中,我们了解了 AI 的三大核心能力,并探讨了它们的协同作用及 AI 的局限性,帮助大家理解 AI 的能力边界。
要进一步理解什么是人工智能,我们还需要了解人工智能包括了哪些核心领域。
当前,人工智能作为一个快速发展的领域,涵盖了多个子领域和应用方向。
本章节将介绍:
- 机器学习
- 深度学习
- 计算机视觉
- 自然语言处理
- 知识表示与推理
内容很多,但是不要慌😼!
我们将从最基础的机器学习开始介绍,顺便介绍其重要分支 - 模仿人类大脑的深度学习,再到赋予计算机 “看” 与 “说” 的能力,最后是构建知识体系的能力。
最终,你会发现人工智能相关的每一个领域,其实都是在告诉我们:人类该如何教会机器学习这件事情。
让我们一起探索这些核心领域,以进一步完成课程主题的核心内容:理解人工智能。
一、机器学习
如果说人工智能犹如一场宏大的交响乐,大语言模型就是当前最激昂的主旋律,而机器学习就是其中的乐理基础,
机器学习(Machine Learning,简称 ML)是人工智能的核心领域之一。
计算机科学家 Tom M. Mitchell 在其著作的 Machine Learning 一书中定义的机器学习为:
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
很明显,正经的学术化定义对于初学者来说有点难🐥
实际上,对于机器学习,当前的我们只需理解下面的内容。
想象一下,你是如何学会分辨猫和狗的?
大概是通过看到许多猫🐱和狗🐶的样子,慢慢总结出它们的特征:猫有三角形的耳朵、细长的尾巴,而狗有圆润的耳朵、不同形状的尾巴。
然后我们就认识它们了。
机器学习正是模仿这种学习过程,不同的是,计算机是通过大量的数据(简单来说,就是图片)来完成这件事情。
所以,机器学习的本质就是让计算机从数据中发现规律。
就像我们通过反复练习才能掌握一项认识猫和狗的技能,计算机则需要通过对大量的数据进行 “学习”,才能获得这项技能。
那么,如何学习呢?
对于初学者,只需要知道这个学习过程中包含的三个关键步骤。
我们以教会计算机识别手写的数字作为例子。
1️⃣ 首先是收集数据。
我们需要收集很多人写的数字样本。
2️⃣ 其次是训练模型。
训练模型,简单理解就是,让计算机分析这些数据,找出数字书写的特征规律。
这像让你通过不断做题来掌握解题方法。
3️⃣ 最后是应用预测。
训练完成后,怎么知道计算机已经学会了呢?
那就需要对它进行测试,看看计算机能不能识别它从没有看过的手写数字。
如果通过,就代表计算机学会了识别新看到的手写数字了。
好了,这就是机器学习的过程了。
是不是有点像让你学会解题后,看到类似题目也会能解出来。
在实际应用中,机器学习已经融入我们的日常生活。
当你在使用人脸解锁,或者看到一些个性化的广告推荐时,其实都是机器学习的应用。
当我们的课程正式进入机器学习这个主题时,我们还会了解很多专业术语,比如