gh风电服务器系统 使用,基于GH Bladed风电机组控制器参数整定与优化

该研究针对风力发电机组控制器参数优化问题,利用Bladed软件获取线性化模型,并采用免疫遗传算法整定各风速点的PI参数。通过变增益PI控制实现参数自适应调整,改善控制效果。同时,探讨了独立变桨控制策略,使用正交实验和免疫遗传算法优化多组PI控制器参数,并开发了Matlab与Bladed的联合仿真平台验证优化方法的有效性,显著提升了独立变桨控制系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

目前,国内外大型风电机组控制器中仍主要采用PI控制算法。由于风力发电系统的非线性和参数时变等特点,机组线性模型不易获得。在各个风速工作点的线性化模型参数变化较大,基于某个风速点模型整定的PI参数无法在整个工作范围都取得最优控制效果。针对风力发电机组控制器参数在设计和优化过程中不易计算与整定的问题。本课题根据不同风速点先应用Bladed软件对风电机组模型进行线性化处理,获取用于PI参数整定的线性化模型,然后应用免疫遗传算法分别整定出各个风速点的最优PI参数;再根据多组变桨控制器PI参数与桨距角之间变化规律,通过变增益PI控制自适应调整PI参数,仿真结果表明了本课题采用的参数整定与优化方法的优越性。随着风力发电机组不断向大型化发展,风湍流、风剪切、塔影等效应使得整个桨叶扫掠平面内风速差异明显增大,风轮气动载荷不均衡也给风电机组造成很大疲劳载荷和振动。采用基于坐标变换的独立变桨控制可实现载荷反馈控制,有效的改善风轮气动载荷不均衡的问题。目前已在国外大型风电机组应用的独立变桨距控制策略多采用3独立PI控制环结构,为解决多组PI参数的综合优化问题。本课题通过正交实验分析各个PI控制器参数对系统性能指标的影响趋势及影响程度,然后在正交实验的基础上采用免疫遗传算法对独立变桨控制器PI参数进行优化。为了提高风力发电机组控制算法仿真的可信性,同时降低控制器的设计和分析难度,本课题最后结合Bladed外控制器、Matlab引擎技术和命名管道技术开发了Matlab与Bladed联合仿真平台,对基于坐标变换的独立变桨控制器进行仿真与验证。仿真结果表明所建立的独立变桨控制器PI参数综合优化方法对独立变桨控制系统的多个耦合控制器PI参数具有非常好的综合优化效果。

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值