DP——悬线法

悬线法是一种用于求解满足特定条件的最大子矩阵的算法。通过定义悬线及对应的L(i,j)、R(i,j)和U(i,j),初始化各参数并进行状态转移,最终枚举每条悬线的下端点来找到最大的子矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

悬线法

用途

求解满足条件的最大子矩阵。

定义

悬线:由一个点向下扩展所得到的合法线段。
L(i,j)L(i,j)L(i,j):从(i,j)(i,j)(i,j)向左扩展,最左端的合法位置。
R(i,j)R(i,j)R(i,j):从(i,j)(i,j)(i,j)向右扩展,最右端的合法位置。
U(i,j)U(i,j)U(i,j):从(i,j)(i,j)(i,j)向上扩展,最上端的合法位置,即以(i,j)(i,j)(i,j)为下端点的悬线上端点。
推论:每一个点对应一条悬线,即以其本身为下端点的悬线。

初始化

首先,将U(i,j)U(i,j)U(i,j)全部赋值为1,即每条悬线长度均为1。
对于每一行的L(i,j)L(i,j)L(i,j)R(i,j)R(i,j)R(i,j),先全部赋值为jjj,然后枚举第iii行的合法情况,更新L(i,j)L(i,j)L(i,j)R(i,j)R(i,j)R(i,j)

状态转移

对于每个点(i,j)(i,j)(i,j),若可以向上扩展,则
U(i,j)=U(i−1,j)+1U(i,j)=U(i-1,j)+1U(i,j)=U(i1,j)+1
L(i,j)=max(L(i,j),L(i−1,j))L(i,j)=max(L(i,j),L(i-1,j))L(i,j)=max(L(i,j),L(i1,j))
R(i,j)=min(R(i,j),R(i−1,j))R(i,j)=min(R(i,j),R(i-1,j))R(i,j)=min(R(i,j),R(i1,j))
推论:每一条悬线对应一个子矩阵。

由上述内容可得,每个点对应一条悬线,每条悬线对应一个合法的子矩阵。

求解

枚举每一条悬线的下端点,其子矩阵边长分别为R(i,j)−L(i,j)+1R(i,j)-L(i,j)+1R(i,j)L(i,j)+1U(i,j)U(i,j)U(i,j),计算其大小,更新答案即可。

例题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值