悬线法
用途
求解满足条件的最大子矩阵。
定义
悬线:由一个点向下扩展所得到的合法线段。
L(i,j)L(i,j)L(i,j):从(i,j)(i,j)(i,j)向左扩展,最左端的合法位置。
R(i,j)R(i,j)R(i,j):从(i,j)(i,j)(i,j)向右扩展,最右端的合法位置。
U(i,j)U(i,j)U(i,j):从(i,j)(i,j)(i,j)向上扩展,最上端的合法位置,即以(i,j)(i,j)(i,j)为下端点的悬线上端点。
推论:每一个点对应一条悬线,即以其本身为下端点的悬线。
初始化
首先,将U(i,j)U(i,j)U(i,j)全部赋值为1,即每条悬线长度均为1。
对于每一行的L(i,j)L(i,j)L(i,j)和R(i,j)R(i,j)R(i,j),先全部赋值为jjj,然后枚举第iii行的合法情况,更新L(i,j)L(i,j)L(i,j)和R(i,j)R(i,j)R(i,j)。
状态转移
对于每个点(i,j)(i,j)(i,j),若可以向上扩展,则
U(i,j)=U(i−1,j)+1U(i,j)=U(i-1,j)+1U(i,j)=U(i−1,j)+1
L(i,j)=max(L(i,j),L(i−1,j))L(i,j)=max(L(i,j),L(i-1,j))L(i,j)=max(L(i,j),L(i−1,j))
R(i,j)=min(R(i,j),R(i−1,j))R(i,j)=min(R(i,j),R(i-1,j))R(i,j)=min(R(i,j),R(i−1,j))
推论:每一条悬线对应一个子矩阵。
由上述内容可得,每个点对应一条悬线,每条悬线对应一个合法的子矩阵。
求解
枚举每一条悬线的下端点,其子矩阵边长分别为R(i,j)−L(i,j)+1R(i,j)-L(i,j)+1R(i,j)−L(i,j)+1、U(i,j)U(i,j)U(i,j),计算其大小,更新答案即可。