python 堆(heapq模块)topK问题

本文介绍了Python中heapq模块用于实现堆的功能,堆作为一种优先队列数据结构,允许快速找到最小元素。堆的特性是父节点的值小于其子节点的值。通过heapify函数可以将列表转换为合法的堆。文章详细讲解了如何利用heapq解决topK问题,包括排序切片法和使用heapq模块动态维护堆的方法,适用于大量数据中快速找出最大K个数的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python中的堆

  1. python中没有独立的堆这个数据结构,但是有一个包含堆操作函数的模块(heapq)
函数 功能
heappush(heap, x) 将x压入堆中
heappop(heap) 从堆中弹出最小元素
heapify(heap) 让列表具备堆特征
heapreplace(heap, x) 弹出最小元素,并将x压入堆中
nlargest(n, iter) 返回iter中n个最大的元素
nsmallest(n, iter) 返回iter中n个最小的元素
  1. 堆(heap)是一种优先队列。优先队列让你能够以任意顺序添加对象,并随时找出删除最小的元素
from heapq import *
from random import shuffle

# a = list(range(10))

a = [0,1,2,3,4,5,6,7,8,9]
shuffle(a)

heap = []
for i in a:
	heappush(heap, i)

print(a)     # [8, 6, 7, 3, 5, 4, 2, 0, 1, 9]
print(heap)  # [0, 1, 3, 2, 6, 7, 4, 8, 5, 9]

元素的排列顺序并不像看起来那么随意,虽然不是严格排序的,但必须保证:位置 i 处的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值