kmeans代码实现聚类python,并输出对应的聚类中心

这是一个使用Python和numpy库实现K-Means聚类算法的代码示例,首先随机选择k个初始聚类中心,然后在指定的最大迭代次数内更新聚类中心,通过计算每个样本到聚类中心的距离进行分组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是一个用 Python 实现 K-Means 聚类的代码示例:

import numpy as np

def kmeans(X, k, max_iterations=100):
    # 随机选择 k 个初始聚类中心
    centers = X[np.random.choice(X.shape[0], k, replace=False), :]
    
    for i in range(max_iterations):
        # 计算每个样本到每个聚类中心的距离
        distances = np.array([np.linalg.n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值