Levenberg-Marquardt算法在非线性最小二乘问题中的应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:勒让德-马夸特算法(LMA)是一种结合了梯度下降法和高斯-牛顿法优点的数值优化算法,尤其适用于解决非线性最小二乘问题。算法通过迭代方式逼近最优解,并在病态情况下调整以防止陷入局部极小值或发散。LMA的核心在于使用Hessian矩阵和雅可比矩阵,并通过勒让德因子λ控制算法行为。该算法在数据拟合、参数估计等方面表现突出,对于稀疏数据处理尤为高效,广泛应用于图像处理、机器学习等多个领域。
Levenberg-Marquardt Algorithm

1. Levenberg-Marquardt算法简介

Levenberg-Marquardt (LM) 算法是一种在科学计算和工程领域广泛使用的优化算法,特别是在非线性最小二乘问题的求解中表现出色。该算法结合了梯度下降法和高斯-牛顿法的优势,通过调整一个关键的正则化参数(勒让德因子λ),在搜索过程中平衡了算法的收敛速度和稳定性。

LM算法的主要优势在于它的稳健性,它能在局部最小值附近快速收敛,并且对初始参数值的选择不太敏感。算法的核心是构建一个信赖域内的二次近似模型,从而迭代地最小化目标函数。在接下来的章节中,我们将深入探讨LM算法的数学原理、提出背景以及它在各类实际问题中的应用。

2. 非线性最小二乘问题解决

2.1 非线性最小二乘问题概念

2.1.1 最小二乘问题的数学定义

非线性最小二乘问题是指在一组非线性模型参数中寻找最优解,以最小化模型预测值与实际观测值之间的残差平方和。若给定一组观测数据 ((x_i, y_i), i=1,2,…,m) 和非线性模型 (f(x, \beta)),我们试图找到参数 (\beta) 的估计值 (\hat{\beta}),使得残差平方和 (S(\beta) = \sum_{i=1}^{m}(y_i - f(x_i, \beta))^2) 最小。最小化 (S(\beta)) 就是一个非线性最小二乘问题。

2.1.2 非线性最小二乘问题的特点

这类问题的显著特点之一是目标函数(残差平方和)是非线性的。这导致了优化过程中可能出现多个局部最小值,增加了求解难度。此外,非线性最小二乘问题的解可能依赖于初始猜测值,不同初始值可能会收敛到不同的局部最优解。由于问题的非线性特性,求解过程中需要采用迭代方法,常见的有高斯-牛顿法、梯度下降法及其变体。

2.2 Levenberg-Marquardt算法的提出背景

2.2.1 算法的起源与发展

Levenberg-Marquardt算法(LM算法)是由Kenneth Levenberg和Donald Marquardt分别独立提出的,结合了高斯-牛顿法的快速收敛性和梯度下降法的稳定性。LM算法的主要贡献在于通过引入一个阻尼因子(勒让德因子λ),在每次迭代中自适应地调整优化方向和步长,从而在问题的不同阶段权衡局部线性近似和梯度下降的优势。

2.2.2 算法与传统方法的对比

与传统的高斯-牛顿法相比,LM算法在处理病态问题(即目标函数的Hessian矩阵接近奇异)时表现更为稳定。此外,与梯度下降法相比,LM算法在接近最优解时具有更快的收敛速度。这种结合了两种方法优点的策略使得LM算法成为求解非线性最小二乘问题的一个极为有效的工具。

接下来,我们将深入探讨梯度下降法与高斯-牛顿法的结合及其在LM算法中的融合机制,这是理解LM算法核心优势的关键所在。

3. 梯度下降法与高斯-牛顿法结合

3.1 梯度下降法基本原理

3.1.1 梯度下降法的直观理解

梯度下降法是一种迭代优化算法,用于求解函数的局部最小值。它利用了损失函数的梯度信息来指导搜索方向,迭代地改进参数,直到达到最小值。在机器学习中,梯度下降法经常被用来优化模型参数,以最小化损失函数。

直观地说,假设我们处于一个山谷中,目标是找到山谷的最低点。梯度下降法告诉我们,朝当前地形最陡峭下降的方向走,就能最快地到达最低点。在数学上,这个最陡峭的方向是由损失函数的梯度(即偏导数向量)给出的。算法在每一步都沿着梯度的反方向移动一小步,这个步长由学习率控制。通过重复这个过程,逐步逼近最小值。

3.1.2 梯度下降法的实现步骤

以下是梯度下降法的标准实现步骤:

  1. 初始化参数 :随机选择起始点,初始化模型参数。
  2. 计算梯度 :计算当前参数下的损失函数相对于每个参数的梯度。
  3. 参数更新 :沿着梯度的反方向更新参数,更新公式通常为: θ = θ - α * ∇J(θ) ,其中 θ 是参数, α 是学习率, ∇J(θ) 是损失函数相对于参数的梯度。
  4. 终止条件判断 :如果更新的步长小于预设的阈值或达到了预定的迭代次数,则停止迭代。
# 梯度下降法实现示例
def gradient_descent(x, y, learning_rate, iterations):
    # 假设 m 是样本数量,theta 是参数向量
    m = len(x)
    theta = np.zeros(n)  # n 是参数的数量

    for i in range(iterations):
        gradients = 2/m * X.T.dot(X.dot(theta) - y)
        theta = theta - learning_rate * gradients
        # 这里的 X 是特征矩阵,y 是目标向量
    return theta

在上述代码中, X y 分别表示训练样本的特征矩阵和目标向量。 theta 是需要优化的参数向量。通过 gradient_descent 函数,我们可以根据给定的学习率和迭代次数,更新参数 theta 来最小化损失函数。

3.2 高斯-牛顿法简介

3.2.1 高斯-牛顿法的推导

高斯-牛顿法是一种优化算法,主要用于非线性最小二乘问题。与传统的梯度下降法不同,高斯-牛顿法利用了损失函数的二阶导数信息,这使得它特别适合于非线性模型参数的优化。

高斯-牛顿法的推导基于泰勒展开和最小二乘问题的矩阵形式。简单来说,对于损失函数 J(θ) ,高斯-牛顿法构建了一个近似线性方程,将非线性问题转化为线性最小二乘问题,然后使用矩阵运算来求解。这种方法特别有效,当损失函数接近二次型,即它有一个良好的凸形状时。

3.2.2 高斯-牛顿法的优缺点

优点
- 快速收敛 :在损失函数接近二次型时,高斯-牛顿法能快速收敛到最优解。
- 计算效率 :由于利用了二阶导数信息,高斯-牛顿法通常需要的迭代次数较少。

缺点
- 适用于小残差 :对于非线性较强的系统,或者有较大残差时,高斯-牛顿法可能无法获得最佳效果。
- 内存消耗 :需要存储二阶导数信息,对于大规模问题,内存消耗较大。

# 高斯-牛顿法实现示例
def gauss_newton(X, y, theta, iterations):
    m, n = X.shape
    for i in range(iterations):
        J = X.dot(theta) - y
        H = X.T.dot(X)  # 这里假设J是近似二次型
        b = X.T.dot(J)
        delta_theta = np.linalg.solve(H, b)
        theta -= delta_theta
    return theta

上述代码中, X 是特征矩阵, y 是目标向量, theta 是初始参数向量。迭代过程中,通过线性方程 H * delta_theta = b 求解参数更新量 delta_theta ,然后更新 theta

3.3 Levenberg-Marquardt算法的融合机制

3.3.1 算法融合的关键思想

Levenberg-Marquardt算法是梯度下降法和高斯-牛顿法的结合体。这种融合机制的目的是结合两者的优点,即高斯-牛顿法的快速收敛和梯度下降法的鲁棒性。Levenberg-Marquardt算法引入一个正则化项,调节梯度下降和高斯-牛顿步骤的比例,通过调整勒让德因子 λ 来平衡这两种方法的影响。

当勒让德因子 λ 较大时,算法趋向于梯度下降,这样可以在参数空间的大范围内进行搜索;而当 λ 较小时,则倾向于高斯-牛顿法,对当前近似二次型的局部进行更精细的搜索。这种机制允许算法在不同阶段自动切换搜索策略,适应不同的优化情况。

3.3.2 融合后算法的性能优势

Levenberg-Marquardt算法的性能优势在于:

  • 收敛速度 :在初始阶段或参数空间的平坦区域,算法能够快速收敛。
  • 鲁棒性 :当接近解时,算法能自动转变为梯度下降模式,提高对局部极小值的鲁棒性。
  • 适应性 :算法能够根据问题特性自动调整搜索策略,适应不同的优化环境。
flowchart LR
A[开始优化] -->|初始化参数| B[计算梯度和Hessian矩阵]
B --> C{是否收敛}
C -->|否| D[更新勒让德因子λ]
D --> B
C -->|是| E[算法收敛,输出结果]

在上述的流程图中,展现了Levenberg-Marquardt算法迭代优化的过程。从开始优化到计算梯度和Hessian矩阵,再到判断是否收敛。如果不收敛,则更新勒让德因子 λ ,然后返回重新计算梯度和Hessian矩阵,直至收敛。

4. Hessian矩阵与雅可比矩阵应用

4.1 Hessian矩阵的作用

4.1.1 Hessian矩阵的定义

Hessian矩阵是一个多变量函数的二阶偏导数构成的方阵,用于描述该函数在其定义域内的曲率特性。对于一个含有n个变量的实值函数f(x), Hessian矩阵H定义为:

[ H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} ]

其中,( i, j = 1, 2, \ldots, n ),且( H_{ij} )为Hessian矩阵中的元素,位于第i行第j列。如果所有二阶偏导数连续,则Hessian矩阵是对称矩阵。

4.1.2 Hessian矩阵在优化问题中的应用

在优化问题中,Hessian矩阵用于分析目标函数的局部性质。一个重要的应用是在牛顿法中,Hessian矩阵用于更新步骤,帮助找到函数的局部最小值点。在优化问题中,Hessian矩阵描述了函数的局部形状。例如,如果Hessian矩阵在某点是正定的,则该点可能是局部最小值点。

graph TD;
    A[Hessian矩阵的定义] --> B[二阶偏导数的方阵];
    B --> C[用于描述函数的曲率特性];
    C --> D[在优化中用于更新步骤];
    D --> E[通过正定性判断局部最小值];

4.2 雅可比矩阵的角色

4.2.1 雅可比矩阵的定义及其性质

雅可比矩阵是向量值函数的导数矩阵,其每一行由对应输出变量对输入变量的偏导数组成。对于向量函数( \mathbf{F}(x) = [F_1(x), F_2(x), \ldots, F_m(x)] ),雅可比矩阵J定义为:

[ J_{ij} = \frac{\partial F_i}{\partial x_j} ]

其中,( i = 1, 2, \ldots, m ),( j = 1, 2, \ldots, n )。

雅可比矩阵的性质包括但不限于线性、乘积法则和链式法则。它描述了输入变量变化对输出变量变化的影响。

4.2.2 雅可比矩阵在非线性问题中的应用

雅可比矩阵在非线性问题的解决中扮演关键角色。它通常用于表达非线性系统中的线性近似,比如在牛顿法的迭代过程中,雅可比矩阵被用于求解线性方程组,从而更新解向量。此外,在处理多变量函数的优化问题时,雅可比矩阵有助于确定函数的局部行为,并指导求解器接近最优点。

4.3 Hessian和雅可比矩阵在算法中的结合使用

4.3.1 结合使用的理论基础

Hessian和雅可比矩阵的结合使用源自于它们在多变量函数的局部性质分析中的互补作用。雅可比矩阵用于表示函数的线性近似,而Hessian矩阵则提供了对函数曲率的更深入了解。在优化算法中,这种结合可以通过迭代更新步骤体现出来,结合的目的是为了更高效地逼近最优解。

4.3.2 结合使用时的计算策略与优化

结合Hessian和雅可比矩阵进行计算时,一个常见策略是使用线搜索方法结合牛顿法。首先,雅可比矩阵用于计算当前点的梯度和近似线性模型,然后在该线性模型上应用线搜索来选取合适的步长。最终,Hessian矩阵用于构造一个更准确的二次模型,利用这个模型进行下一步的迭代更新。

graph TD;
    A[结合使用理论基础] --> B[雅可比矩阵的线性近似];
    B --> C[Hessian矩阵提供曲率信息];
    C --> D[迭代更新结合两种方法];
    D --> E[线搜索结合牛顿法优化步长];
    E --> F[二次模型指导下步迭代];

5. 勒让德因子λ的作用与调整

5.1 勒让德因子λ的基本概念

5.1.1 λ的定义与作用

勒让德因子(Levenberg-Marquardt damping factor),通常表示为λ,是Levenberg-Marquardt算法中用于平衡梯度下降和高斯-牛顿法之间权衡的一个关键参数。在算法迭代过程中,λ的取值会影响更新步长的大小,从而控制搜索方向是更倾向于梯度下降法还是高斯-牛顿法的特性。

在高斯-牛顿法中,问题往往会被转化为求解线性方程组。然而,在问题过于复杂或初始近似解距离真实解较远时,这个线性化过程可能会导致二阶近似误差过大,此时就需要引入勒让德因子来限制步长,避免过度更新导致解的震荡。

5.1.2 λ的选择对算法性能的影响

选择合适的λ值对于确保Levenberg-Marquardt算法能够有效且稳定地收敛至关重要。若λ值过大,算法倾向于梯度下降法,这可能导致迭代次数增多,收敛速度变慢;反之,若λ值太小,算法则过于依赖高斯-牛顿法,容易导致在某些特定情况下发生发散。

因此,λ值的选取往往需要根据实际问题的特性以及迭代过程中的情况动态调整。好的λ值能够在保证稳定性的同时,使算法保持较快的收敛速度,这需要综合考量函数的曲率、梯度信息以及当前迭代的步长等因素。

5.2 λ的调整策略

5.2.1 自适应调整λ的方法

为了更好地平衡算法的稳定性和收敛速度,通常采用自适应策略来调整勒让德因子λ的值。其中一种常用的方法是在迭代过程中动态调整λ的大小。算法初始时可以选择一个较大的λ值来保证稳定性,随着迭代的进行,逐渐减小λ的值,使得算法逐渐偏向高斯-牛顿法的快速收敛特性。

这种方法的一个关键点在于如何确定λ的变化规律,常见的策略包括:

  • 当连续几次迭代目标函数值有明显下降时,减小λ值。
  • 如果迭代过程中遇到目标函数值上升或者达到预设的迭代次数上限,则增加λ值。

5.2.2 优化过程中λ调整的实例分析

以一个典型的非线性最小二乘问题为例,我们首先定义一个目标函数f(x),然后使用Levenberg-Marquardt算法进行求解。为了分析λ的调整策略对结果的影响,我们可以运行算法时记录下每次迭代的λ值、目标函数值和迭代步数。

以实验数据为基础,我们可以绘制出目标函数值随迭代次数变化的曲线,同时标出每次λ值的调整点。通过对比不同λ调整策略下的收敛曲线,我们可以观察到不同的调整策略对算法收敛性的影响。比如,自适应调整策略相比于固定λ值的情况,通常能获得更快的收敛速度和更稳定的优化过程。

在实际应用中,适当的λ调整策略能显著提高算法处理复杂非线性问题的能力,尤其是在实际问题中常见的噪声和不确定性较大的情况下。这不仅能够提高求解精度,还能提高算法整体的鲁棒性,是Levenberg-Marquardt算法调优中不可或缺的一部分。

代码块展示

下面是一个简化的Python代码示例,使用scipy库中的Levenberg-Marquardt算法解决非线性最小二乘问题,并展示如何自定义λ调整策略。

from scipy.optimize import least_squares
import numpy as np

# 目标函数
def func(x):
    return [0.5 * (x[0] + 1), 0.5 * (x[1] - x[0]**2)]

# 雅可比矩阵
def jac(x):
    return np.array([
        [0.5, 0],
        [-x[0], 0.5]
    ])

# 初始参数
x0 = np.array([1, 1])

# 自定义的lambda调整策略
def update_lambda(x, result):
    if result.status == 1:  # 收敛
        return max(0.1 * result.message['lambda'], 1e-10)
    else:  # 未收敛或参数超出预设范围
        return 10 * result.message['lambda']

# 调用Levenberg-Marquardt算法
res = least_squares(func, x0, jac=jac, xtol=1e-8, ftol=1e-8, max_nfev=50, gtol=1e-8, loss='linear', 
                    verbose=2, args=(), kwargs={}, col_deriv=0, 
                    factor=100, diag=None, method='lm', callback=None)

print(f"Solution: {res.x}")

在上述代码中,我们定义了一个非线性目标函数和雅可比矩阵,并使用 least_squares 函数来执行优化。其中 callback 参数允许我们在每次迭代后运行自定义函数 update_lambda 来更新λ值。

代码逻辑分析

在上述代码中,我们使用了 least_squares 函数来寻找函数 func 的根,即当函数值接近0时的参数值。在每次迭代后,算法都会调用 update_lambda 函数,根据结果的状态(成功收敛或未收敛)来调整λ值。

  • 如果算法成功收敛( result.status == 1 ),则减小λ值( 0.1 * result.message['lambda'] ),以便算法在后续迭代中更依赖高斯-牛顿法。
  • 如果算法未能收敛,或者在迭代过程中参数值超出了预设范围,则增加λ值( 10 * result.message['lambda'] ),以增强算法的稳定性。

通过适当的λ调整,我们可以在保持稳定性的同时,提升算法的收敛速度,从而有效地解决非线性最小二乘问题。

参数说明

least_squares 函数中,我们使用了以下关键参数:

  • xtol ftol 分别控制变量和目标函数值的收敛容忍度。
  • max_nfev 为最大迭代次数,用于避免算法陷入无限迭代。
  • gtol 为梯度的收敛容忍度,决定了函数梯度值的大小。
  • loss 用于设置损失函数,此例中使用线性损失函数。

这些参数共同作用于算法的收敛条件和优化路径。适当的参数设置对于算法的性能至关重要。

6. 稀疏数据处理

6.1 稀疏数据的概念及其挑战

6.1.1 稀疏数据的定义与特性

稀疏数据是指数据集中存在大量的零值或空白值,仅少数元素有有效值的一种数据状态。在机器学习和数据科学中,稀疏性是数据的一种重要特性,尤其在处理高维数据时,如自然语言处理(NLP)和图像处理等领域,稀疏数据的出现极为常见。稀疏数据的特性主要表现为数据维度高、非零值占比小以及潜在的数据结构复杂。

稀疏矩阵是稀疏数据的一种典型表示形式。例如,在文本挖掘中,词频-逆文档频率(TF-IDF)矩阵就是一种常见的稀疏矩阵,因为每个文档中仅包含很小比例的词汇。稀疏数据处理在优化问题中具有特别的难点,尤其是在算法效率和存储空间方面。

6.1.2 稀疏数据在优化问题中的难点

处理稀疏数据的优化问题时,主要的难点集中在以下几个方面:

  • 存储要求 :传统的数据结构和算法在面对高维稀疏数据时,往往需要大量的内存空间。例如,一个拥有数万维度的稀疏向量,即便其中大部分值为零,存储时依然会占用大量空间。
  • 计算复杂度 :在高维稀疏数据的优化问题中,许多算法可能面临高昂的计算复杂度。许多操作需要遍历非零元素,而稀疏性导致无法简单地利用向量化操作。
  • 算法性能 :稀疏数据条件下,常用的优化算法可能无法有效收敛,或者收敛速度会大幅度减慢,这会直接影响到模型的性能和训练速度。

6.2 稀疏数据的处理方法

6.2.1 针对稀疏性的算法修改

为了克服稀疏数据带来的困难,研究人员和工程师们开发了一系列针对稀疏性的算法修改,目的是提高算法对稀疏数据的处理效率和优化性能。在Levenberg-Marquardt算法的实现中,可以通过以下方式进行优化:

  • 优化数据结构 :使用适合稀疏数据的存储方式,如压缩稀疏行(CSR)或压缩稀疏列(CSC)格式,减少不必要的内存占用。
  • 稀疏矩阵运算 :引入专门的稀疏矩阵运算库,这些库能够高效地利用稀疏数据的特性进行矩阵操作,例如在Python中使用SciPy库的稀疏矩阵功能。
from scipy.sparse import csr_matrix

# 创建一个稀疏矩阵示例
data = np.array([1, 2, 3, 4])
row_ind = np.array([0, 0, 1, 2])
col_ind = np.array([0, 2, 2, 0])
A = csr_matrix((data, (row_ind, col_ind)), shape=(3, 3))
  • 改进迭代方法 :将传统的算法如梯度下降法改进为适用于稀疏数据的版本。比如只对非零元素进行操作,这样可以大幅减少计算量。

6.2.2 稀疏数据处理的效率提升

在实际应用中,可以使用特定的数据结构和算法来提升稀疏数据处理的效率。下面是一些可以采取的措施:

  • 稀疏数据压缩 :应用数据压缩技术,比如Huffman编码、Lempel-Ziv-Welch(LZW)压缩等,将稀疏数据集有效压缩,进而减少存储和传输的开销。
  • 并行计算 :在硬件允许的条件下,利用并行计算技术对稀疏数据的非零元素进行操作,可以显著提高算法的运行速度。
  • 算法融合 :结合多种算法的优势,例如结合随机梯度下降(SGD)和高斯-牛顿法,来处理具有稀疏特征的优化问题。

综上所述,处理稀疏数据时,关键是针对其特性采取优化措施,合理选择和设计算法,以及利用现代计算技术,才能高效解决优化问题。这些策略的实施不仅能够降低计算资源的消耗,而且还能提升算法的性能和实用性。

7. 数据拟合与参数估计

7.1 数据拟合的重要性与方法

7.1.1 数据拟合的基本概念

数据拟合是使用数学模型来近似表示实际观测数据的过程。通过构建一个或多个数学函数,这些函数能描述数据点的趋势和模式,从而帮助我们理解和预测未观测到的数据。好的数据拟合可以揭示数据背后的规律,而差的数据拟合则可能隐藏关键信息,导致分析结果不可靠。数据拟合在科学研究、工程和经济学等领域中都非常重要,因为它能够提供对未来事件的预测以及对现有系统行为的深入理解。

7.1.2 常见的数据拟合技术

在众多的数据拟合技术中,线性回归是最基础且广泛使用的一种。它适用于数据可以通过一条直线最好地表达的情况。另外,多项式回归是处理非线性关系的常用方法。我们还可以使用样条插值等方法来拟合数据,这些方法能够在数据点之间产生平滑的曲线或曲面。

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import CubicSpline

# 示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 创建三次样条插值对象
cs = CubicSpline(x, y)

# 使用样条插值计算并绘图
x_new = np.linspace(0, 10, 1000)
y_new = cs(x_new)
plt.plot(x, y, 'o', label='Original data')
plt.plot(x_new, y_new, '-', label='Cubic Spline')
plt.legend()
plt.show()

在这段代码中,我们使用了三次样条插值方法来拟合一组正弦数据。

7.2 参数估计的理论与实践

7.2.1 参数估计的数学基础

参数估计是统计学中的一个基本概念,它涉及到如何基于样本数据来估计总体参数。通常,我们对参数的估计分为点估计和区间估计。点估计就是用一个具体的数值来估计参数,而区间估计则是给出一个置信区间,该区间有一定的概率包含真实的参数值。在实际应用中,我们往往使用最大似然估计(MLE)或贝叶斯估计方法来获得参数的估计值。

7.2.2 Levenberg-Marquardt算法在参数估计中的应用

Levenberg-Marquardt算法特别适用于最小化非线性模型的参数估计问题。因为此算法能够有效地结合梯度下降法和高斯-牛顿法的优点,快速地找到参数的最优解。在参数估计中,Levenberg-Marquardt算法常常被用来解决那些对初始值敏感的模型,特别是在曲线拟合、图像处理和机器学习领域。通过调整λ的值,算法可以在快速收敛和维持稳定性之间取得平衡,从而找到最佳的参数估计。

import lmfit

# 定义模型函数
def gaussian(x, amp, cen, wid):
    return amp * np.exp(-(x-cen)**2 / wid)

# 创建模型参数
params = lmfit.Parameters()
params.add('amp', value=1.0)
params.add('cen', value=0.0)
params.add('wid', value=1.0)

# 数据准备
x_data = np.linspace(-10, 10, 200)
y_data = gaussian(x_data, amp=2.0, cen=0.0, wid=1.5)

# 添加噪声
y_data += 0.2*np.random.normal(size=x_data.size)

# 使用Levenberg-Marquardt算法拟合数据
result = lmfit.minimize(gaussian, params, args=(x_data, y_data))

# 输出拟合结果
print(result.params)

在这段代码中,我们使用了 lmfit 库来拟合一个高斯模型,展示了Levenberg-Marquardt算法在参数估计中的应用。通过拟合我们获得了一组参数的最佳估计值。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:勒让德-马夸特算法(LMA)是一种结合了梯度下降法和高斯-牛顿法优点的数值优化算法,尤其适用于解决非线性最小二乘问题。算法通过迭代方式逼近最优解,并在病态情况下调整以防止陷入局部极小值或发散。LMA的核心在于使用Hessian矩阵和雅可比矩阵,并通过勒让德因子λ控制算法行为。该算法在数据拟合、参数估计等方面表现突出,对于稀疏数据处理尤为高效,广泛应用于图像处理、机器学习等多个领域。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值