AI Agent,一个当下科技领域特别火爆的概念。发展至今,它规划、记忆、协调等核心功能在处理复杂关系方面遭遇了瓶颈...那么该如何解决?来人,上Graph!
Graph以其高效关联分析能力,结合Agent的自主决策优势,完美实现复杂关系的高效推理与动态决策!鉴于如此优势,Graph+AI Agents自然成为了一个高潜力、强创新的研究方向,不仅拥有广泛的应用场景,相对应的学术研究也十分火热。
但在多模态扩展、高效协作、深度推理三方面,这方向仍然存在空白,强推各位论文er关注!值得一提的是,这方向发论文的关键在于提出新颖的智能体协作范式,或解决重要场景中的图谱推理瓶颈。
为帮助大家理清思路,找准baseline搞定创新点,本文根据上述三个核心功能,整理了15篇Graph+AI Agents新论文供大家参考,代码基本都有!
全部论文+开源代码需要的同学看文末
Enhancing the Patent Matching Capability of Large Language Models via the Memory Graph
方法:论文提出了一种名为MemGraph的方法,通过结合Graph和AI Agents来增强专利匹配能力。它利用记忆图提取专利中的关键实体和概念分类(本体),帮助语言模型更好地理解专利语义,从而提高专利匹配的准确性和推理能力。
创新点:
-
提出MemGraph框架,用记忆图增强LLMs专利匹配能力,解决模型依赖关键词、忽略分类和关系问题。
-
利用记忆图提取专利实体和本体,辅助检索与生成,提升LLMs语义理解与匹配精度。
-
在PatentMatch数据集验证MemGraph有效性,性能超基线模型,泛化能力佳。
A-Mem: Agentic Memory for LLM Agents
方法:论文提出A-MEM记忆系统,用于增强LLM代理记忆管理能力。它动态构建更新知识图谱组织记忆,利用AI代理自主决策管理记忆,能自动识别记忆关联、据新经验更新记忆,实现高效灵活管理。
创新点:
-
提出A-MEM记忆系统,基于Zettelkasten方法动态构建知识网络,以原子笔记和灵活链接结构化组织记忆。
-
新记忆添加时,系统自动识别与历史记忆关联并建链接,触发现有记忆上下文更新,实现记忆动态进化。
-
在长期对话任务中,A-MEM优于现有方法,复杂推理任务表现出色,计算效率更高。
RATT: AThought Structure for Coherent and Correct LLM Reasoning
方法:论文提出了一种叫RATT的思维结构,通过构建思维树(Graph)和利用LLM(AI Agents)的能力,结合事实核查和策略规划,动态优化推理过程,提升LLM在复杂任务中的逻辑连贯性和决策效率。
创新点:
-
提出RATT结构,结合思维树和检索增强生成,提升LLM推理的逻辑性和准确性。
-
在每个推理步骤中融入事实核查和策略评估,动态优化思维树结构。
-
实验验证了RATT在多种任务中优于现有方法,显著提高逻辑连贯性和决策效率。
MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning
方法:论文提出了一种名为MAGNNET的框架,用于多智能体系统中的任务分配。它结合了GNN和深度强化学习,通过集中训练和去中心化执行的方式,让无人机和地面机器人在3D环境中高效分配任务,减少冲突并优化总旅行时间。
创新点:
-
提出MAGNNET框架,结合GNN和DRL,实现异构多智能体系统去中心化任务分配。
-
训练用全局批评器优化,执行时智能体依局部观测和GNN消息传递独立运行,去中心化决策。
-
实验表明,该方法任务分配成功率和总旅行时间近集中式方法,可扩展性好,能动态响应任务。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“222”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏