高等数学笔记-极限

极限

数学上:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A”已经足够取得高精度计算结果)
——简单说:“无限靠近而永远不能到达”。
——极限存在则收敛,极限不存在则发散。

定义:

1.数列极限:ϵ\epsilonϵ-N) if ∀ϵ\forall\epsilonϵ>0, ∃\existsN>0,当n>N时,|ana_nan-A|<ϵ\epsilonϵ  ⟺  \ifflim⁡n→∞an=A\lim\limits_{n\to \infty} a_n=Anliman=A
ps:ϵ为任意小的正数,an为一数列,N为正整数,A为数列的极限(或称收敛)\epsilon为任意小的正数,a_n为一数列,N为正整数,A为数列的极限(或称收敛)ϵanNA)

其实就是:数列趋于某数:lim⁡n→∞an=A\lim\limits_{n\to \infty} a_n=Anliman=A,这就是一个比较标准的写法,通过|ana_nan-A|<ϵ\epsilonϵ表示两者无限接近(接近程度用两个数之差的绝对值表示),其中N是与ϵ\epsilonϵ相关的,随ϵ\epsilonϵ而定。

举例说明:

数列XnX_nXn:2,12,43,...,n+(−1)n-1n,...2,\frac{1}{2},\frac{4}{3},...,\cfrac{n +(-1)\raisebox{0.25em}{n-1}}{n},...2,21,34,...,nn+(1)n-1,...数列极限
|XnX_nXn-1|=|(−1)n-11n(-1)\raisebox{0.25em}{n-1}\frac{1}{n}(1)n-1n1|=1n\frac{1}{n}n1

由图和式子我们可知道当n->∞\inftyϵ\epsilonϵ无限小)时,数列是趋于1.


邻域:无限小的范围(开区间)。U(a,δ\deltaδ)=(a-δ\deltaδ,a+δ\deltaδ)
去心邻域:把邻域中心a去掉(图像a为空心点)。U˚\mathring{U}U˚=(a-δ\deltaδ,a+δ\deltaδ)
ps:a为邻域的中心,δ\deltaδ为邻域的半径(非常小) 。
邻域

可以发现该图其实就是图一在极限1附近的放大版




2.函数极限1—x趋于有限值:ϵ\epsilonϵ-δ\deltaδif ∀ϵ\forall\epsilonϵ>0, ∃δ\exists\deltaδ>0, 当0<|x-x0x_0x0|<δ\deltaδ时,|f(x)-A|<ϵ\epsilonϵ  ⟺  \ifflim⁡x→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Axx0limf(x)=A
ps:ϵ为\epsilon为ϵ任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛),0<|x-x0x_0x0|<δ\deltaδ表示去心邻域(0<|x-x0x_0x0|表示去心),领域半径δ\deltaδ表示x接近a的程度。
在这里插入图片描述
该图为f(x)当x→f(x)当x\tof(x)xx0x_0x0时极限A的几何解释:任意给定一正数ϵ\epsilonϵ,作平行于x轴的两条直线y=A+ϵ\epsilonϵ和y=A-ϵ\epsilonϵ,介于这两条直线之间的一横条区域。



3.函数极限2—|x|趋于无穷大:ϵ\epsilonϵ-x) if ∀ϵ\forall\epsilonϵ>0, ∃\existsX>0, 当|x|>X时,|f(x)-A|<ϵ\epsilonϵ  ⟺  \ifflim⁡x→∞f(x)=A\lim\limits_{x\to\infty} f(x)=Axlimf(x)=A
ps:ϵ为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛)\epsilon为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛)ϵf(x)NA).
∣x∣可表示为x>0(x→+∞|x|可表示为x>0(x\to+ \inftyxx>0(x+)和x<0(x→−∞x<0(x\to- \inftyx<0(x)  ⟺  \ifflim⁡x→+∞f(x)=A\lim\limits_{x\to+\infty} f(x)=Ax+limf(x)=A,lim⁡x→−∞f(x)=A\lim\limits_{x\to-\infty} f(x)=Axlimf(x)=A.
举例说明:
在这里插入图片描述
该图为f(x)当∣x∣→f(x)当|x|\tof(x)x∞\infty时极限A的几何解释:作直线y=A-ϵ\epsilonϵ和y=A+ϵ\epsilonϵ,则总有一个正数X存在,使得当x<-X或x>X时,函数y=f(x)的图形位于这两直线之间。

性质:

1.唯一性:存在即唯一

2.局部有界性:若lim⁡x→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Axx0limf(x)=A,那么存在常数M>0和δ\deltaδ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ时,有|f(x)|⩽\leqslantM
  局部(只在去心邻域中):0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ。 有界:|f(x)|⩽\leqslantM

3.局部保号性:若lim⁡x→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Axx0limf(x)=A,且A>0(或A<0),那么存在δ\deltaδ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ时,有f(x)>0(或f(x)<0).
  局部(只在去心邻域中):0<∣x−x0∣<δ0<|x-x_0|<\delta0<xx0<δ。 保号:正负号与极限值一致。

4.函数极限与数列极限的关系lim⁡n→∞f(xn)\lim\limits_{n\to \infty} f(x_n)nlimf(xn)=lim⁡x→x0f(x)\lim\limits_{x\to x_0} f(x)xx0limf(x)

准则:

1.准则I(夹逼定理)
If an⩽bn⩽cn且lim⁡n→∞an=lim⁡n→∞cn=Aa_n\leqslant b_n\leqslant c_n且\lim\limits_{n\to \infty} a_n=\lim\limits_{n\to \infty}c_n=Aanbncnnliman=nlimcn=A  ⇒\Rarr  lim⁡n→∞bn=A\lim\limits_{n\to \infty} b_n=Anlimbn=A

2.准则II(单调有界函数必有极限)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值