极限
数学上:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A”已经足够取得高精度计算结果)
——简单说:“无限靠近而永远不能到达”。
——极限存在则收敛,极限不存在则发散。
定义:
1.数列极限:(ϵ\epsilonϵ-N) if ∀ϵ\forall\epsilon∀ϵ>0, ∃\exists∃N>0,当n>N时,|ana_nan-A|<ϵ\epsilonϵ ⟺ \iff⟺limn→∞an=A\lim\limits_{n\to \infty} a_n=An→∞liman=A
ps:ϵ为任意小的正数,an为一数列,N为正整数,A为数列的极限(或称收敛)\epsilon为任意小的正数,a_n为一数列,N为正整数,A为数列的极限(或称收敛)ϵ为任意小的正数,an为一数列,N为正整数,A为数列的极限(或称收敛)
其实就是:数列趋于某数:limn→∞an=A\lim\limits_{n\to \infty} a_n=An→∞liman=A,这就是一个比较标准的写法,通过|ana_nan-A|<ϵ\epsilonϵ表示两者无限接近(接近程度用两个数之差的绝对值表示),其中N是与ϵ\epsilonϵ相关的,随ϵ\epsilonϵ而定。
举例说明:

|XnX_nXn-1|=|(−1)n-11n(-1)\raisebox{0.25em}{n-1}\frac{1}{n}(−1)n-1n1|=1n\frac{1}{n}n1
由图和式子我们可知道当n->∞\infty∞(ϵ\epsilonϵ无限小)时,数列是趋于1.
邻域:无限小的范围(开区间)。U(a,δ\deltaδ)=(a-δ\deltaδ,a+δ\deltaδ)
去心邻域:把邻域中心a去掉(
ps:a为邻域的中心,δ\deltaδ为邻域的半径(非常小) 。

可以发现该图其实就是图一在极限1附近的放大版
2.函数极限1—x趋于有限值:(ϵ\epsilonϵ-δ\deltaδ) if ∀ϵ\forall\epsilon∀ϵ>0, ∃δ\exists\delta∃δ>0, 当0<|x-x0x_0x0|<δ\deltaδ时,|f(x)-A|<ϵ\epsilonϵ ⟺ \iff⟺limx→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Ax→x0limf(x)=A
ps:ϵ为\epsilon为ϵ为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛),0<|x-x0x_0x0|<δ\deltaδ表示去心邻域(0<|x-x0x_0x0|表示去心),领域半径δ\deltaδ表示x接近a的程度。
该图为f(x)当x→f(x)当x\tof(x)当x→x0x_0x0时极限A的几何解释:任意给定一正数ϵ\epsilonϵ,作平行于x轴的两条直线y=A+ϵ\epsilonϵ和y=A-ϵ\epsilonϵ,介于这两条直线之间的一横条区域。
3.函数极限2—|x|趋于无穷大:(ϵ\epsilonϵ-x) if ∀ϵ\forall\epsilon∀ϵ>0, ∃\exists∃X>0, 当|x|>X时,|f(x)-A|<ϵ\epsilonϵ ⟺ \iff⟺limx→∞f(x)=A\lim\limits_{x\to\infty} f(x)=Ax→∞limf(x)=A
ps:ϵ为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛)\epsilon为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛)ϵ为任意小的正数,f(x)为一函数,N为正整数,A为数列的极限(或称收敛).
∣x∣可表示为x>0(x→+∞|x|可表示为x>0(x\to+ \infty∣x∣可表示为x>0(x→+∞)和x<0(x→−∞x<0(x\to- \inftyx<0(x→−∞) ⟺ \iff⟺limx→+∞f(x)=A\lim\limits_{x\to+\infty} f(x)=Ax→+∞limf(x)=A,limx→−∞f(x)=A\lim\limits_{x\to-\infty} f(x)=Ax→−∞limf(x)=A.
举例说明:
该图为f(x)当∣x∣→f(x)当|x|\tof(x)当∣x∣→∞\infty∞时极限A的几何解释:作直线y=A-ϵ\epsilonϵ和y=A+ϵ\epsilonϵ,则总有一个正数X存在,使得当x<-X或x>X时,函数y=f(x)的图形位于这两直线之间。
性质:
1.唯一性:存在即唯一
2.局部有界性:若limx→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Ax→x0limf(x)=A,那么存在常数M>0和δ\deltaδ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ时,有|f(x)|⩽\leqslant⩽M
局部(只在去心邻域中):0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ。 有界:|f(x)|⩽\leqslant⩽M
3.局部保号性:若limx→x0f(x)=A\lim\limits_{x\to x_0} f(x)=Ax→x0limf(x)=A,且A>0(或A<0),那么存在δ\deltaδ>0,使得当0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ时,有f(x)>0(或f(x)<0).
局部(只在去心邻域中):0<∣x−x0∣<δ0<|x-x_0|<\delta0<∣x−x0∣<δ。 保号:正负号与极限值一致。
4.函数极限与数列极限的关系:limn→∞f(xn)\lim\limits_{n\to \infty} f(x_n)n→∞limf(xn)=limx→x0f(x)\lim\limits_{x\to x_0} f(x)x→x0limf(x)
准则:
1.准则I(夹逼定理):
If an⩽bn⩽cn且limn→∞an=limn→∞cn=Aa_n\leqslant b_n\leqslant c_n且\lim\limits_{n\to \infty} a_n=\lim\limits_{n\to \infty}c_n=Aan⩽bn⩽cn且n→∞liman=n→∞limcn=A ⇒\Rarr⇒ limn→∞bn=A\lim\limits_{n\to \infty} b_n=An→∞limbn=A
2.准则II(单调有界函数必有极限):