- 博客(89)
- 收藏
- 关注
原创 论文reading学习记录4 - weekly - 视觉端到端开创-LOAM
端到端BEV提出人,2020超高引论文:Lift,Splat,Shot:通过隐式非投影到3D来对来自任意相机组的图像进行编码我们提出了一个端到端架构,输入多视图相机,之后直接在BEV坐标系推断语义(车:蓝,可行驶区域:橙,车道:绿),然后将BEV预测投影回图像。网络输出的 BEV cost map 就像一个“路况热力图”,我们把模板轨迹“扔到” BEV cost map 上去计算“哪条路最安全、代价最小”,然后选那条作为规划结果。很老的方案都是在摄像头坐标系做的分割。
2025-07-19 23:46:30
781
原创 论文reading学习记录3 - weekly - 模块化视觉端到端ST-P3
题目:ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning2022年的视觉端到端论文。ego-motion:自身运动真的好难 :(提出了一种联合时空特征学习的端到端方法,明确设计网络中的中间表示提出了一种以自我为中心的对齐累积技术,在鸟瞰图转换之前保留3D空间中的几何信息以进行感知。双路径建模,以考虑过去的运动变化,用于未来的预测。
2025-07-17 01:35:47
1014
原创 论文reading学习记录2 - weekly -端到端概述
本周阅读端到端综述,题目对基于深度学习的自动驾驶系统中预测与规划集成的再思考:综述模块化自动驾驶系统通常将预测和规划作为连续的、单独的任务来处理。最近的模型越来越多地将预测和规划整合到一个联合或相互依存的步骤中,以模拟双向交互。迄今为止,缺乏对不同整合原则的全面概述。我们系统地回顾了最先进的基于深度学习的预测和规划,并专注于集成预测和规划模型。集成的不同方面,从模型架构和模型设计到行为方面,都被考虑并相互关联。全面概述了基于DL的预测(第3节)和规划(第4节)的常见表示、架构和最新方法。
2025-07-09 11:51:26
597
原创 论文reading学习记录1 - weekly
好久没写博客了,决定开一个坑,“每周”阅读一篇论文(不嫌多),自动驾驶+VLM+VLA相关。刚开始可能会比较困难,因为还要上班,加上很多新概念不会,需要大量的查阅资料,很花费时间,但尽量会加快速度。另外,挑战自己,高强度工作的前提下,持续学习提升,看看能够撑多久,gogogo!!地平线cvpr best paper主要提出了一个新的自动驾驶系统框架(UniAD),这个框架处理感知、预测和规划等任务(一段式大模型),并且强调这些任务应该协同工作,以解决传统方法中出现的累积误差和任务协调不足的问题。
2025-07-07 17:16:17
193
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人