Softmax回归交叉熵损失函数求导

本文详细探讨了softmax回归中交叉熵损失函数的求导过程,通过复合函数求导法则,分别计算了∂zi/∂C和∂aj/∂Cj,并得出最终的梯度公式:∂zi/∂C = ai - yi。这个梯度在分类问题中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

softmax函数的表达式:ai=ezi∑kezka_{i}=\frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}ai=kezkezi

交叉熵 损失函数:C=−∑iyiln⁡aiC=-\sum_{i} y_{i} \ln a_{i}C=iyilnai

根据复合函数求导法则:∂C∂zi=∑j(∂Cj∂aj∂aj∂zi)\frac{\partial C}{\partial z_{i}}=\sum_{j}\left(\frac{\partial C_{j}}{\partial a_{j}} \frac{\partial a_{j}}{\partial z_{i}}\right)ziC=j(ajCjziaj)

计算前面一项:∂Cj∂aj=∂(−yjln⁡aj)∂aj=−yj1aj\frac{\partial C_{j}}{\partial a_{j}}=\frac{\partial\left(-y_{j} \ln a_{j}\right)}{\partial a_{j}}=-y_{j} \frac{1}{a_{j}}ajCj=aj(yjlnaj)=yj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值