广告推荐系统中模型训练中模型的结构信息、Dense数据、Sparse数据

下面结合广告推荐系统常见的深度学习模型(比如 Wide & Deep、DeepFM、Two-Tower 等),介绍一下“模型的结构信息”、Dense 数据和 Sparse 数据在训练过程中的角色及处理方式。

  1. 模型结构信息

    • 输入层(Input Layer)
      • Sparse 输入:各类离散高维特征(用户 ID、广告 ID、性别、兴趣标签、地域等)
      • Dense 输入:各类连续或低维数值特征(用户年龄、广告曝光时长、历史点击率、价格、设备指标等)
    • Embedding 层(仅对 Sparse 特征)
      • 把每个稀疏 one-hot/multi-hot 特征映射到一个低维实数向量。
      • Embedding lookup 后,得到每个类别特征的 d 维稠密向量。
    • 特征交叉(可选)
      • Wide 组件:对原始特征或特征交叉做线性模型;
      • Deep 组件:把多个 embedding 向量拼接(concat)或做内积、FM 二阶交叉,再进入 MLP。
    • MLP(全连接网络层)
      • 若干层全连接 + 激活(ReLU、PReLU、Dice 等),用于学习复杂非线性特征交互。
    • 输出层
      • 一般是 Sigmoid(点击率预估)或 Softmax(多目标分类),接着是交叉熵损失。
  2. Dense 数据(数值型特征)

    • 特征形式:浮点数或归一化后的数值,通常维度不高(十几到上百维)。
    • 示例
      • 用户特征:Age(18–60→[0,1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值