近期,Diffusion Transformer(以下简称DiT)在视频生成等研究中表现出了独特的优势,引起了广泛关注。本文将从理论到实践,深入浅出地介绍DiT的相关知识。
一、DiT的核心优化思路与问题理解
(一)官方论文中的优势点
- 性能提升:DiT在ImageNet基准测试中取得了先进的FID(Fréchet Inception Distance)结果,特别是在256×256分辨率的基准测试中,实现了2.27的FID,显示出其生成高质量、高保真度图像的能力。
- 可扩展性:DiT的计算复杂度与生成样本质量之间存在强相关性,通过增加模型的GFLOPs(如增加变换器的深度/宽度或输入tokens的数量),可以显著提高生成图像的质量。
- 灵活性:研究者可以通过调整模型的大小、补丁大小和序列长度来探索不同的设计空间,为未来的研究和应用提供了灵活性。
(二)个人理解层面
- 引入Transformer架构:替换Stable Diffusion及下游变体中最常用的U-Net架构。Transformer架构擅长处理时序相关问题,解决了Unet模型架构对于时序生成的最大难点。
- 时序处理:在DiT之前,视频生成算法尝试过多种架构,核心思路是引入时间维度T的信息。例如3D-Unet虽然增加了时间维度的特征,但仍存在时序上的一致性问题,需要加后补丁等进一步优化。而Transformer天然支持时序输入,并且可以并行处理多路输入,解决了Unet中难以处理的时序+多帧输入问题,因此越来越多的视频生成基础模型框架以DiT为基础。
(三)代价分析
- 训练收敛困难:在推荐系统中,算法同学能获取到高质量大规模的训练数据,让transformer充分发挥潜力。但在图像领域,构建百万级的训练数据需要自己去构建,不能从现有交易系统中直接获取,非常考验做大规模数据集的功底。到视频层面,数据量更少,质量更差,难度更大。
- 训练资源和需求大:对数据量和GPU运算资源都有很大要求,大多数论文中会详细说明训练资源、时常以及数据集获取及处理方式。
二、DiT网络结构概述
DiT模型使用Transformer作为其主干网络,替代了传统的U-Net架构。这些模型在Latent Space中训练,通过变换器处理潜在的图像块(patches)。其中,每个tokens在序列中都有一个隐藏维度d,即向量大小。
三、DiT模块结构图解与源码详解
(一)模块结构图解
DiT块是模型的核心,它处理输入的token序列。研究者们探索了四种不同的Transformer块设计,以处理条件输入(如噪声时间步t、类别标签c等),包括上下文条件、交叉注意力块、自适应层归一化(adaLN)块和adaLN-Zero块。
(二)源码详解
AdaLN模块的细粒度优化方案:在PixArt-a中,对adaLN-Zero进行了优化,将其优化成adaLN-single。adaLN-Zero占据的参数量非常大(27%),而在应用中比较有限,为了降低参数量,只在第一个块中使用时间维度的特征作为输入进行独立控制,并在所有块中共享。
AdaLN-single代码实现:
class PixArtBlock(nn.Module):
"""
A PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., window_size=0, input_size=None, use_rel_pos=False, **block_kwargs):
super().__init__()
self.hidden_size = hidden_size
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = WindowAttention(hidden_size, num_heads=num_heads, qkv_bias=True,
input_size=input_size if window_size == 0 else (window_size, window_size),
use_rel_pos=use_rel_pos, **block_kwargs)
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.window_size = window_size
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
def forward(self, x, y, t, mask=None, **kwargs):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
x = x + self.cross_attn(x, y, mask)
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
AdaLN-zero代码实现:
# adaLN 模块
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
DiT模块源码详解
DiT块代码实现:
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
完整forward代码实现:
def forward(self, x, t, y):
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
y = self.y_embedder(y, self.training) # (N, D)
c = t + y # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
带CFG的forward代码实现:
def forward_with_cfg(self, x, t, y, cfg_scale):
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
四、DiT的输入参数规格&patch化
(一)输入参数规格
DiT模型的输入规格涉及到将图像的噪声潜在表示分割成小块,并将这些小块转换成一个长序列,以便Transformer可以处理。这个过程的计算复杂度随着patch大小的减小而增加,因为需要处理更多的tokens。这种设计允许模型在潜在空间中有效地处理图像数据,并在生成过程中利用Transformer的强大能力。
(二)时序embedding模块构建
整体编码方式参考了openai的glide编码模式,和StableDiffusion有一定差异。Timestep_embedding后接一层MLP。
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
(三)Label Embedding构建
LabelEmbedder在原文中提到为了能够高效使用Classifier-Free Guidance而引入的Dropout层,具体的实现就在这个模块中。
class LabelEmbedder(nn.Module):
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
五、DiT与UNet效果对比
传统的U-Net架构在扩散模型中被广泛使用,但DiT-XL/2在性能上超越了这些模型,展示了DiT架构的优势。
六、DiT模型全阶段优化
扩展DiT模型在训练的所有阶段都能改善FID。研究者们展示了12个DiT模型在训练迭代过程中的FID-50K。顶部行是在保持补丁大小不变的情况下比较FID,底部行是在保持模型大小不变的情况下比较FID。Transformer Backbone在所有模型大小和补丁大小下都能产生更好的生成模型。
七、Patch化操作的实现
(一)Patch化操作
通过“patchify”过程,空间表示被转换成一个token序列。序列的长度T由输入图像的空间尺寸除以补丁(Patch)大小的平方决定,即T=(I/p)2T = (I/p)^2T=(I/p)2。例如,如果输入图像是256×256像素,补丁(Patch)大小是4×4像素,那么序列长度T将是(256/4)2=642=4096(256/4)^2 = 64^2 = 4096(256/4)2=642=4096。
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
...
# patch化操作使用了timm.models.vision_transformer 中自带的编码
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
num_patches = self.x_embedder.num_patches
# pose embedding 使用了sin-cos编码方式
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
(二)逆Patch化操作
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
八、可扩展性分析
研究者们分析了DiT模型的可扩展性,即模型复杂度(以GFLOPs衡量)与样本质量(以FID衡量)之间的关系。他们发现,具有更高GFLOPs的DiT模型(通过增加Transformer的深度/宽度或输入Tokens的数量)通常具有更低的FID,表现出更好的性能。