动态分析软件:ADINA_(8).非线性动力学分析

非线性动力学分析

在动态分析软件中,非线性动力学分析是一个重要的模块,用于研究在动态载荷作用下结构的非线性响应。非线性动力学分析包括材料非线性、几何非线性和接触非线性等多种非线性效应。本节将详细介绍这些非线性效应的原理和内容,并通过具体的例子进行说明。

材料非线性

材料非线性是指材料在受力过程中表现出的非线性特性,如塑性变形、应变率效应、温度依赖性等。这些特性使得材料的应力-应变关系不再是线性的,从而需要更复杂的模型来描述其行为。

塑性变形

塑性变形是指材料在超过屈服强度后发生不可逆的塑性流动。在ADINA中,可以使用多种塑性模型来描述材料的塑性行为,如J2塑性模型、Drucker-Prager模型等。

例子:J2塑性模型

假设我们有一个简单的平面应力问题,需要使用J2塑性模型来分析结构在动态载荷作用下的塑性变形。以下是一个ADINA输入文件的示例:


*HEADING

Example of J2 Plasticity Model in ADINA



*PARAMETER

E = 210000, NU = 0.3, SIGY = 300, H = 1000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, 1.0, 0.0

3, 1.0, 1.0

4, 0.0, 1.0



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*PLASTIC, LAW=VONMISES

SIGY, H



*STEP, DYNAMIC, DIRECT

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, 1000, 0.0, 0.0, 1.0, 1.0



*END STEP

应变率效应

应变率效应是指材料的力学性能随应变率的变化而变化。在高速动态载荷作用下,材料的强度和刚度会显著增加。ADINA中可以通过定义应变率相关材料模型来考虑这一效应。

例子:应变率相关材料模型

假设我们需要分析一个冲击载荷下的结构,考虑材料的应变率效应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Strain Rate Dependent Material Model in ADINA



*PARAMETER

E = 210000, NU = 0.3, SIGY = 300, H = 1000, STRAIN_RATE = 1000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, 1.0, 0.0

3, 1.0, 1.0

4, 0.0, 1.0



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*PLASTIC, LAW=VONMISES, STRAIN_RATE_DEPENDENT

SIGY, H, STRAIN_RATE



*STEP, DYNAMIC, DIRECT

*TIME, TOTAL=0.01, INITIAL=0.001, DELTA=0.0001

*DLOAD

1, 10000, 0.0, 0.0, 1.0, 1.0



*END STEP

几何非线性

几何非线性是指结构在受力过程中因变形而引起的大位移、大旋转和大应变效应。这些效应使得结构的刚度矩阵发生变化,从而需要在分析过程中不断更新刚度矩阵。

大位移效应

大位移效应是指结构在受力过程中产生的位移较大,使得结构的初始几何形状发生显著变化。在ADINA中,可以通过定义大位移分析来考虑这一效应。

例子:大位移效应

假设我们有一个悬臂梁,需要考虑其在动态载荷作用下的大位移效应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Large Displacement Analysis in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=BEAM

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, LARGE_DISPLACEMENT

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L, W/2



*END STEP

大应变效应

大应变效应是指结构在受力过程中产生的应变较大,使得材料的变形程度显著。在ADINA中,可以通过定义大应变分析来考虑这一效应。

例子:大应变效应

假设我们有一个橡胶材料的结构,需要考虑其在动态载荷作用下的大应变效应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Large Strain Analysis in ADINA



*PARAMETER

E = 1000, NU = 0.49, RHO = 1000, L = 1, W = 1, T = 0.1, F = 1000



*PART, NAME=RUBBER

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=RUBBER_MATERIAL

*HYPERELASTIC, NEO_HOOKEAN

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, LARGE_STRAIN

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L, W/2



*END STEP

接触非线性

接触非线性是指在分析过程中,结构与结构之间或结构与边界之间发生的接触和分离效应。这些效应使得结构的响应更加复杂,需要特殊的接触算法来处理。

单面接触

单面接触是指两个接触面之一是固定的,另一个可以接触和分离。在ADINA中,可以通过定义单面接触来模拟这种效应。

例子:单面接触

假设我们有两个结构,一个固定的地面和一个自由落体的物体,需要考虑其在动态载荷作用下的单面接触效应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Single Surface Contact in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=GROUND

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*PART, NAME=BODY

*NODE

5, 0.0, 1.0

6, L, 1.0

7, L, W+1

8, 0.0, W+1



*ELEMENT, TYPE=PLANE42

1, 5, 6, 7, 8



*MATERIAL, NAME=RUBBER

*HYPERELASTIC, NEO_HOOKEAN

E, NU

*DENSITY

RHO



*SURFACE, TYPE=SEGMENTS, NAME=SURF-1

1, 2, 3, 4



*SURFACE, TYPE=SEGMENTS, NAME=SURF-2

5, 6, 7, 8



*CONTACT PAIR, TYPE=SINGLE_SURFACE, INTERACTION=INT-1

SURF-1, SURF-2



*STEP, DYNAMIC

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W+1



*END STEP

双面接触

双面接触是指两个接触面都可以移动,相互之间可以接触和分离。在ADINA中,可以通过定义双面接触来模拟这种效应。

例子:双面接触

假设我们有两个结构,一个固定的地面和一个自由落体的物体,需要考虑其在动态载荷作用下的双面接触效应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Double Surface Contact in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=GROUND

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*PART, NAME=BODY

*NODE

5, 0.0, 1.0

6, L, 1.0

7, L, W+1

8, 0.0, W+1



*ELEMENT, TYPE=PLANE42

1, 5, 6, 7, 8



*MATERIAL, NAME=RUBBER

*HYPERELASTIC, NEO_HOOKEAN

E, NU

*DENSITY

RHO



*SURFACE, TYPE=SEGMENTS, NAME=SURF-1

1, 2, 3, 4



*SURFACE, TYPE=SEGMENTS, NAME=SURF-2

5, 6, 7, 8



*CONTACT PAIR, TYPE=DOUBLE_SURFACE, INTERACTION=INT-1

SURF-1, SURF-2



*STEP, DYNAMIC

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W+1



*END STEP

复合材料的非线性动力学分析

复合材料由于其多相结构,表现出复杂的非线性动力学特性。在ADINA中,可以通过定义复合材料的层合模型来考虑这些特性。

层合模型

层合模型是指将复合材料视为多层结构,每一层可以有不同的材料属性。在ADINA中,可以通过定义层合模型来模拟复合材料的非线性动力学行为。

例子:复合材料层合模型

假设我们有一个复合材料的层合板,需要考虑其在动态载荷作用下的非线性动力学响应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Composite Laminate Analysis in ADINA



*PARAMETER

E1 = 140000, NU1 = 0.3, RHO1 = 1500, THICK1 = 0.1

E2 = 210000, NU2 = 0.3, RHO2 = 7800, THICK2 = 0.1

L = 10, W = 1, F = 10000



*PART, NAME=COMPOSITE

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=SHELL41

1, 1, 2, 3, 4



*MATERIAL, NAME=LAYUP1

*ELASTIC

E1, NU1

*DENSITY

RHO1



*MATERIAL, NAME=LAYUP2

*ELASTIC

E2, NU2

*DENSITY

RHO2



*LAYUP, ELEMENT=1, MATERIALS=LAYUP1, LAYUP2

0.0, 0.0, 0.0, THICK1

0.0, 0.0, 90.0, THICK2



*STEP, DYNAMIC

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

非线性动力学分析的数值方法

非线性动力学分析通常采用数值方法来求解,如Newmark法、中心差分法等。这些方法可以通过时间积分来求解结构的动态响应。

Newmark法

Newmark法是一种常用的求解动力学问题的数值方法,通过时间积分来求解结构的动态响应。在ADINA中,可以通过设置相应的参数来使用Newmark法。

例子:Newmark法

假设我们有一个简单的平面应力问题,需要使用Newmark法来分析结构在动态载荷作用下的响应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Newmark Method in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, NEWMARK

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*NEWMARK, ALFA=0.25, BETA=0.5

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

中心差分法

中心差分法是一种简单的求解动力学问题的数值方法,通过时间积分来求解结构的动态响应。在ADINA中,可以通过设置相应的参数来使用中心差分法。

例子:中心差分法

假设我们有一个简单的平面应力问题,需要使用中心差分法来分析结构在动态载荷作用下的响应。以下是一个ADINA输入文件的示例:


*HEADING

Example of Time Step Selection in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, DIRECT

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

时间步长的选择

时间步长的选择对于非线性动力学分析的稳定性和准确性至关重要。通常,时间步长需要根据问题的特性进行选择,既要保证计算的稳定性,又要尽量减少计算时间。选择合适的时间步长可以避免数值解的振荡和不收敛问题,同时提高计算效率。

优化建议
  1. 初始时间步长:初始时间步长的选择应基于载荷的快速变化部分。例如,对于冲击载荷,初始时间步长应较小,以捕捉冲击波的快速传播。

  2. 自适应时间步长:ADINA支持自适应时间步长控制,可以根据计算过程中的误差自动调整时间步长。这可以提高计算的效率和准确性。

  3. 稳定性条件:对于显式时间积分方法(如中心差分法),时间步长应满足稳定性条件,通常为:

    $$

    \Delta t \leq \frac{2L}{c}

    $$

    其中,LLL是结构的最小特征长度,ccc是材料的波速。

  4. 精度要求:对于隐式时间积分方法(如Newmark法),时间步长的选择应根据所需的精度来确定。较小的时间步长可以提高精度,但会增加计算时间。

例子:自适应时间步长

假设我们有一个动态载荷作用下的结构,需要使用自适应时间步长进行分析。以下是一个ADINA输入文件的示例:


*HEADING

Example of Adaptive Time Step in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, DIRECT, ADAPTIVE

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*ADAPTIVE CONTROLS

MIN=0.001, MAX=0.1, FACTOR=1.5, ERROR=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

网格划分

网格划分的合理性和细化程度对非线性动力学分析结果的准确性有重要影响。合理的网格划分可以捕捉结构的复杂变形,同时避免过度细化导致的计算资源浪费。

优化建议
  1. 网格细化:在结构的关键区域(如应力集中区、接触区域)进行网格细化,以提高这些区域的计算精度。

  2. 网格质量:确保网格的质量,避免出现歪斜、扭曲的单元,这些单元可能导致数值解的不准确。

  3. 网格独立性分析:进行网格独立性分析,逐步细化网格,直至结果不再明显变化,从而确定合适的网格密度。

例子:网格细化

假设我们有一个悬臂梁,需要在关键区域进行网格细化以提高计算精度。以下是一个ADINA输入文件的示例:


*HEADING

Example of Mesh Refinement in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 10, W = 1, T = 0.1, F = 10000



*PART, NAME=BEAM

*NODE

1, 0.0, 0.0

2, L/2, 0.0

3, L, 0.0

4, 0.0, W

5, L/2, W

6, L, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 5, 4

2, 2, 3, 6, 5



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, LARGE_DISPLACEMENT

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

计算资源管理

非线性动力学分析通常需要大量的计算资源,合理管理计算资源可以提高计算效率。

优化建议
  1. 并行计算:利用多核处理器或分布式计算环境进行并行计算,可以显著提高计算速度。

  2. 内存优化:合理配置内存使用,避免内存溢出导致的计算中断。

  3. 计算域分解:对于大规模问题,可以采用计算域分解技术,将问题分解为多个子域进行并行计算。

例子:并行计算

假设我们有一个大规模的结构分析问题,需要使用并行计算来提高效率。以下是一个ADINA输入文件的示例:


*HEADING

Example of Parallel Computing in ADINA



*PARAMETER

E = 210000, NU = 0.3, RHO = 7800, L = 100, W = 1, T = 0.1, F = 10000



*PART, NAME=PART-1

*NODE

1, 0.0, 0.0

2, L, 0.0

3, L, W

4, 0.0, W



*ELEMENT, TYPE=PLANE42

1, 1, 2, 3, 4



*MATERIAL, NAME=STEEL

*ELASTIC

E, NU

*DENSITY

RHO



*STEP, DYNAMIC, DIRECT, PARALLEL

*TIME, TOTAL=1.0, INITIAL=0.1, DELTA=0.01

*PARALLEL CONTROLS

CORES=4, MEMORY=8GB

*DLOAD

1, F, 0.0, 0.0, L/2, W/2



*END STEP

总结

非线性动力学分析是动态分析软件中的一个重要模块,用于研究结构在动态载荷作用下的非线性响应。通过考虑材料非线性、几何非线性和接触非线性等效应,可以更准确地模拟实际工程问题。此外,合理选择和优化计算参数,如时间步长和网格划分,可以显著提高计算效率和准确性。希望本节的内容能够帮助读者更好地理解和应用非线性动力学分析方法。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值