敏感性分析
敏感性分析是多尺度仿真软件中一个重要的功能,用于评估模型参数变化对模型输出的影响。通过敏感性分析,我们可以了解哪些参数对模型的行为最为关键,从而优化模型设置或进行更深入的实验设计。在Copasi中,敏感性分析可以分为局部敏感性分析和全局敏感性分析两种类型。
局部敏感性分析
局部敏感性分析通常用于评估模型参数在特定点上的变化对模型输出的影响。这种分析方法假设参数变化是小的,并且模型在该点附近的行为是线性的。Copasi提供了多种方法来执行局部敏感性分析,包括直接法和归一化法。
直接法
直接法是最常用的局部敏感性分析方法,它通过计算参数变化对模型输出的直接导数来评估参数的影响。具体来说,Copasi会计算模型输出对每个参数的偏导数,从而生成一个敏感性矩阵。
步骤:
-
定义模型:首先,需要在Copasi中定义模型,包括反应、参数、初始条件等。
-
设定敏感性分析:在Copasi的“任务”菜单中选择“敏感性分析”,然后选择“局部敏感性分析”。
-
选择目标函数:选择要分析的目标函数,可以是反应速率、物种浓度等。
-
选择参数:选择要分析的参数,可以是反应常数、初始浓度等。
-
运行分析:点击“运行”按钮,Copasi将计算并显示敏感性结果。
示例:
假设我们有一个简单的生化反应模型,其中包含两个反应和三个物种。模型如下:
A -> B; k1 * A
B -> C; k2 * B
-
定义模型:
-
打开Copasi,新建一个模型。
-
添加物种A、B、C,初始浓度分别为10、0、0。
-
添加反应A -> B,反应速率常数k1设为0.1。
-
添加反应B -> C,反应速率常数k2设为0.2。
-
-
设定敏感性分析:
-
在“任务”菜单中选择“敏感性分析”。
-
选择“局部敏感性分析”。
-
选择目标函数为物种C的浓度。
-
选择参数为k1和k2。
-
-
运行分析:
- 点击“运行”按钮,Copasi将计算并显示物种C的浓度对k1和k2的敏感性。
代码示例:
以下是一个使用Copasi提供的API进行局部敏感性分析的Python代码示例:
import COPASI
# 创建Copasi模型
def create_model():
model = COPASI.CDataModel(COPASI.CCopasiRootContainer.addDatamodel())
model.newModel("SimpleModel", "Reaction", 3, 2, 0)
# 添加物种
compartment = model.getModel().createCompartment("compartment", 1.0)
A = compartment.createMetabolite("A", "A", COPASI.CCopasiParameter.Type_FLOAT, 10.0)
B = compartment.createMetabolite("B", "B", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
C = compartment.createMetabolite("C", "C", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
# 添加反应
reaction1 = model.getModel().createReaction("reaction1", True)
reaction1.addSubstrate(A, 1)
reaction1.addProduct(B, 1)
reaction1.setFunction("Mass action (irreversible)")
reaction1.getParameter("Constant").setValue(0.1)
reaction2 = model.getModel().createReaction("reaction2", True)
reaction2.addSubstrate(B, 1)
reaction2.addProduct(C, 1)
reaction2.setFunction("Mass action (irreversible)")
reaction2.getParameter("Constant").setValue(0.2)
return model
# 进行局部敏感性分析
def perform_local_sensitivity_analysis(model):
task = model.getTask("Sensitivity")
problem = task.getProblem()
problem.setAllParameters(False)
problem.setAllVariables(False)
problem.setVariable("C", COPASI.CCopasiObject.ObjectType Concentration)
problem.setParameter("k1", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k2", COPASI.CCopasiObject.ObjectType Parameter)
task.initialize(True)
task.process(True)
result = task.getResult()
# 打印敏感性结果
for i in range(result.getNumRows()):
for j in range(result.getNumCols()):
print(f"Sensitivity of C concentration to {result.getObjectName(i)}: {result.getValue(i, j)}")
# 主函数
def main():
model = create_model()
perform_local_sensitivity_analysis(model)
if __name__ == "__main__":
main()
解释:
-
create_model:创建一个包含两个反应和三个物种的简单模型。
-
perform_local_sensitivity_analysis:设置局部敏感性分析的任务和问题,选择目标函数为物种C的浓度,参数为k1和k2。
-
main:主函数,调用上述两个函数并运行敏感性分析。
全局敏感性分析
全局敏感性分析用于评估模型参数在较大范围内的变化对模型输出的影响。这种分析方法考虑了参数之间的相互作用,因此可以提供更全面的敏感性信息。Copasi支持多种全局敏感性分析方法,包括Morris方法和Sobol方法。
Morris方法
Morris方法是一种基于因子筛选的敏感性分析方法,通过在参数空间中进行随机抽样,评估每个参数对模型输出的影响。Morris方法可以识别出哪些参数对模型输出有显著影响,哪些参数的影响较小。
步骤:
-
定义模型:在Copasi中定义模型。
-
设定敏感性分析:在“任务”菜单中选择“敏感性分析”,然后选择“全局敏感性分析”。
-
选择目标函数:选择要分析的目标函数。
-
选择参数:选择要分析的参数。
-
设置Morris方法参数:包括参数范围、抽样次数等。
-
运行分析:点击“运行”按钮,Copasi将计算并显示敏感性结果。
示例:
假设我们有一个复杂的生化反应模型,包含多个反应和物种。我们使用Morris方法来评估模型参数的全局敏感性。
-
定义模型:
-
打开Copasi,新建一个模型。
-
添加多个物种和反应,设置初始条件和反应速率常数。
-
-
设定敏感性分析:
-
在“任务”菜单中选择“敏感性分析”。
-
选择“全局敏感性分析”。
-
选择目标函数为某个物种的浓度。
-
选择参数为反应速率常数和其他关键参数。
-
设置Morris方法的参数范围和抽样次数。
-
-
运行分析:
- 点击“运行”按钮,Copasi将计算并显示全局敏感性结果。
代码示例:
以下是一个使用Copasi提供的API进行全局敏感性分析(Morris方法)的Python代码示例:
import COPASI
# 创建Copasi模型
def create_complex_model():
model = COPASI.CDataModel(COPASI.CCopasiRootContainer.addDatamodel())
model.newModel("ComplexModel", "Reaction", 5, 4, 0)
# 添加物种
compartment = model.getModel().createCompartment("compartment", 1.0)
A = compartment.createMetabolite("A", "A", COPASI.CCopasiParameter.Type_FLOAT, 10.0)
B = compartment.createMetabolite("B", "B", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
C = compartment.createMetabolite("C", "C", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
D = compartment.createMetabolite("D", "D", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
E = compartment.createMetabolite("E", "E", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
# 添加反应
reaction1 = model.getModel().createReaction("reaction1", True)
reaction1.addSubstrate(A, 1)
reaction1.addProduct(B, 1)
reaction1.setFunction("Mass action (irreversible)")
reaction1.getParameter("Constant").setValue(0.1)
reaction2 = model.getModel().createReaction("reaction2", True)
reaction2.addSubstrate(B, 1)
reaction2.addProduct(C, 1)
reaction2.setFunction("Mass action (irreversible)")
reaction2.getParameter("Constant").setValue(0.2)
reaction3 = model.getModel().createReaction("reaction3", True)
reaction3.addSubstrate(C, 1)
reaction3.addProduct(D, 1)
reaction3.setFunction("Mass action (irreversible)")
reaction3.getParameter("Constant").setValue(0.3)
reaction4 = model.getModel().createReaction("reaction4", True)
reaction4.addSubstrate(D, 1)
reaction4.addProduct(E, 1)
reaction4.setFunction("Mass action (irreversible)")
reaction4.getParameter("Constant").setValue(0.4)
return model
# 进行全局敏感性分析(Morris方法)
def perform_global_sensitivity_analysis_morris(model):
task = model.getTask("Sensitivity")
problem = task.getProblem()
problem.setAllParameters(False)
problem.setAllVariables(False)
problem.setVariable("E", COPASI.CCopasiObject.ObjectType Concentration)
problem.setParameter("k1", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k2", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k3", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k4", COPASI.CCopasiObject.ObjectType Parameter)
method = task.getMethod()
method.setParameter("Method", "Morris")
method.setParameter("Trajectories", 100)
method.setParameter("Number of steps", 10)
method.setParameter("Parameter scaling", "log")
task.initialize(True)
task.process(True)
result = task.getResult()
# 打印敏感性结果
for i in range(result.getNumRows()):
for j in range(result.getNumCols()):
print(f"Global sensitivity of E concentration to {result.getObjectName(i)}: {result.getValue(i, j)}")
# 主函数
def main():
model = create_complex_model()
perform_global_sensitivity_analysis_morris(model)
if __name__ == "__main__":
main()
解释:
-
create_complex_model:创建一个包含多个反应和物种的复杂模型。
-
perform_global_sensitivity_analysis_morris:设置全局敏感性分析的任务和问题,选择目标函数为物种E的浓度,参数为反应速率常数k1、k2、k3和k4。设置Morris方法的参数,包括轨迹数、步数和参数缩放。
-
main:主函数,调用上述两个函数并运行敏感性分析。
Sobol方法
Sobol方法是一种基于方差分解的全局敏感性分析方法,通过计算参数对模型输出的方差贡献来评估参数的重要性。Sobol方法可以提供更精确的敏感性信息,但计算成本较高。
步骤:
-
定义模型:在Copasi中定义模型。
-
设定敏感性分析:在“任务”菜单中选择“敏感性分析”,然后选择“全局敏感性分析”。
-
选择目标函数:选择要分析的目标函数。
-
选择参数:选择要分析的参数。
-
设置Sobol方法参数:包括样本数、参数范围等。
-
运行分析:点击“运行”按钮,Copasi将计算并显示敏感性结果。
示例:
假设我们有一个包含多个反应和物种的复杂模型,使用Sobol方法来评估模型参数的全局敏感性。
-
定义模型:
-
打开Copasi,新建一个模型。
-
添加多个物种和反应,设置初始条件和反应速率常数。
-
-
设定敏感性分析:
-
在“任务”菜单中选择“敏感性分析”。
-
选择“全局敏感性分析”。
-
选择目标函数为某个物种的浓度。
-
选择参数为反应速率常数和其他关键参数。
-
设置Sobol方法的样本数和参数范围。
-
-
运行分析:
- 点击“运行”按钮,Copasi将计算并显示全局敏感性结果。
代码示例:
以下是一个使用Copasi提供的API进行全局敏感性分析(Sobol方法)的Python代码示例:
import COPASI
# 创建Copasi模型
def create_complex_model():
model = COPASI.CDataModel(COPASI.CCopasiRootContainer.addDatamodel())
model.newModel("ComplexModel", "Reaction", 5, 4, 0)
# 添加物种
compartment = model.getModel().createCompartment("compartment", 1.0)
A = compartment.createMetabolite("A", "A", COPASI.CCopasiParameter.Type_FLOAT, 10.0)
B = compartment.createMetabolite("B", "B", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
C = compartment.createMetabolite("C", "C", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
D = compartment.createMetabolite("D", "D", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
E = compartment.createMetabolite("E", "E", COPASI.CCopasiParameter.Type_FLOAT, 0.0)
# 添加反应
reaction1 = model.getModel().createReaction("reaction1", True)
reaction1.addSubstrate(A, 1)
reaction1.addProduct(B, 1)
reaction1.setFunction("Mass action (irreversible)")
reaction1.getParameter("Constant").setValue(0.1)
reaction2 = model.getModel().createReaction("reaction2", True)
reaction2.addSubstrate(B, 1)
reaction2.addProduct(C, 1)
reaction2.setFunction("Mass action (irreversible)")
reaction2.getParameter("Constant").setValue(0.2)
reaction3 = model.getModel().createReaction("reaction3", True)
reaction3.addSubstrate(C, 1)
reaction3.addProduct(D, 1)
reaction3.setFunction("Mass action (irreversible)")
reaction3.getParameter("Constant").setValue(0.3)
reaction4 = model.getModel().createReaction("reaction4", True)
reaction4.addSubstrate(D, 1)
reaction4.addProduct(E, 1)
reaction4.setFunction("Mass action (irreversible)")
reaction4.getParameter("Constant").setValue(0.4)
return model
# 进行全局敏感性分析(Sobol方法)
def perform_global_sensitivity_analysis_sobol(model):
task = model.getTask("Sensitivity")
problem = task.getProblem()
problem.setAllParameters(False)
problem.setAllVariables(False)
problem.setVariable("E", COPASI.CCopasiObject.ObjectType Concentration)
problem.setParameter("k1", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k2", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k3", COPASI.CCopasiObject.ObjectType Parameter)
problem.setParameter("k4", COPASI.CCopasiObject.ObjectType Parameter)
method = task.getMethod()
method.setParameter("Method", "Sobol")
method.setParameter("Number of trajectories", 1000)
method.setParameter("Number of points", 100)
method.setParameter("Parameter scaling", "log")
task.initialize(True)
task.process(True)
result = task.getResult()
# 打印敏感性结果
for i in range(result.getNumRows()):
for j in range(result.getNumCols()):
print(f"Global sensitivity of E concentration to {result.getObjectName(i)}: {result.getValue(i, j)}")
# 主函数
def main():
model = create_complex_model()
perform_global_sensitivity_analysis_sobol(model)
if __name__ == "__main__":
main()
解释:
-
create_complex_model:创建一个包含多个反应和物种的复杂模型。
-
perform_global_sensitivity_analysis_sobol:设置全局敏感性分析的任务和问题,选择目标函数为物种E的浓度,参数为反应速率常数k1、k2、k3和k4。设置Sobol方法的参数,包括轨迹数、点数和参数缩放。
-
main:主函数,调用上述两个函数并运行敏感性分析。
结论
通过局部敏感性分析和全局敏感性分析,我们可以全面评估参数变化对模型输出的影响。局部敏感性分析适用于参数在小范围内的变化,而全局敏感性分析则考虑了参数在较大范围内的变化及其相互作用。Copasi提供了丰富的工具和方法来执行这两种分析,帮助我们优化模型设置和进行更深入的实验设计。希望上述示例能帮助您更好地理解如何在Copasi中进行敏感性分析。