OpenCL与CUDA(一)

本文介绍了OpenCL和CUDA两种并行计算框架。OpenCL是一个跨平台的计算框架,适用于多种计算设备,而CUDA是NVIDIA专有的,仅支持NVIDIA设备。在计算流程上,OpenCL涉及查询平台、设备、创建上下文等步骤,CUDA则有其特定的程序执行流程。在线程组织上,两者都采用类似的概念,如OpenCL的NDRange和CUDA的Grid与Block,但具体实现和细节有所不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目地

  • OpenCL:跨平台的通用计算框架,将异构平台抽象化为主机部分和设备部分,主机与设备通过命令队列传递指令。适配于多家公司推出的计算平台,包括但不限于AMD、Intel、NVIDIA和Apple。
  • CUDA:由NVIDIA推出的通用并行计算架构,仅用于NVIDIA系列的计算设备。

计算流程

  • OpenCL:OpenCL将除主机外的所有抽象化元素规范在一个上下文中,在之后进行的计算中,只需要维护这一个上下文即可。执行流程可以抽象化为:查询平台->查询设备->创建上下文->创建命令队列->创建内存对象->创建程序对象->编译程序对象->创建内核对象->设备内核参数->执行内核。
  • CUDA:一般情况下,CUDA程序的流程如下:
头文件包含
常量定义
自定义函数和CUDA核函数的声明(原型)
int main(void)
{
	分配主机与设备内存
	初始化主机中的数据
	将某些数据从主机复制到设备
	调用核函数在设备中进行计算
	将某些数据从设备复制到主机
	释放主机与设备内存
}
自定义函数和CUDA核函数的定义

线程组织

  • OpenCL:OpenCL运行时会创建一个整数索引空间,这个索引空间最多是3维的,称为NDRange。NDRange中每一个点称为一个工作项,也就是一个线程。每一个工作项执行内核的一个实例,工作项由它在的索引空间的坐标来标识,这个坐标就是工作组的全局ID。多个工作项组织为工作组,工作组由参数决定数量。看图更清楚:
    OpenCL的线程组织
    图中(Gx,GyG_x, G_yGx,Gy)是索引空间的大小,大的划分区域是工作组,大小是(Sx,SyS_x, S_ySx,Sy)。如图假定工作组的在全局索引中的坐标是(wx,wyw_x, w_ywx,wy),那么其中的每一个工作可以表示为(wx∗Sx+lx,wy∗Sy+lyw_x*S_x+l_x, w_y*S_y+l_ywxSx+lx,wySy+ly),其中(lx,lyl_x, l_ylx,ly)是工作项在工作组中的ID。工作项的ID也可以使用全局索引,使用内置函数即可,具体查看OpenCL文档。
  • CUDA:CUDA中的线程组织与OpenCL类似,其拥有Grid和Block两个概念。从开普勒架构开始,线程块(block)的最大线程数是1024个,网格(grid)的大小最大是231−12^{31}-12311。现在假定程序已经指导你设置的线程情况,每个线程都有独特的ID,这些ID可以由CUDA核函数中的内建变量计算获得。
这些内建变量可以是:(x维度是变化最快的)
gridDim.x gridDim.y gridDim.z分别是grid 的 x维度、y维度和z维度
blockDim与gridDim类似
blockIdx.x 取值范围是0到gridDim.x-1
threadIdx.x 取值范围是0到blockDim.x-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值