
笔记
文章平均质量分 50
Aries^_^
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenCL与CUDA(一)
【代码】OpenCL与CUDA(一)原创 2023-07-12 23:31:28 · 716 阅读 · 0 评论 -
OpenCL的事件
假定现有两个事件对象,evt1, evt2。先用evt1作为第一个OpenCL clEnqueue系列命令的同步事件。那么在调用第二个OpenCL clEnqueue系列命令时把evt1对象的地址作为等待事件列表的参数,而evt2作为第二个OpenCL clEnqueue系列命令的同步事件对象。这样就使得在第二个OpenCL clEnqueue系列命令开始执行前,第一个OpenCL clEnqueue系列命令必须完成。原创 2023-07-11 22:38:59 · 306 阅读 · 0 评论 -
OpenCL学习,并简要与CUDA对比
OpenCL的学习原创 2023-07-09 17:05:32 · 3032 阅读 · 0 评论 -
对象和类C++ 读书笔记
对象和类抽象和类C++中的类 数据表示和操纵数据的方法组合成一个简洁的包。类规范有两个部分组成:类声明:以数据成员的方式描述数据部分,以成员函数的方式描述公有接口。类方法定义:描述如何实现类成员函数。访问控制:private和public。实用类对象的程序都可以直接访问共有部分,但只能通过共有成员函数访问对象的私有成员。控制对成员的访问:数据项通常放在私有部分,组成类接口的成员函数放在共有部分。 类和结构体区别:结构默认的访问级别是public,类是private。实现类成员原创 2022-05-29 16:50:40 · 161 阅读 · 0 评论 -
GPU硬件结构和编程模型(源于nvidia的CUDA文档)
GPU的硬件结构GPU通过一个可扩展的多线程流式多处理器(SMs)构建。一个multiprocessor可以在同一时间处理上百个线程。为了管理这些线程,使用一个特殊的结构SIMT。利用单线程中指令级的并行,以及同步硬件多线程实现的广泛线程级并行性。SIMT Architecturewarps:32个并行线程组。组成warps的独立线程在同一个程序地址同时启动,但是他们分别由各自的指令地址计数器和寄存器状态,也因此可以自由的分支和独立执行。意思是,half-warp在一个warp中可以是前一个也可以是翻译 2022-05-29 15:03:07 · 1061 阅读 · 0 评论 -
面向对象设计原则
总纲抵御变化对象封装代码数据有一系列可被复用的公共接口拥有各自责任的抽象体依赖倒置原则高层模块(稳定)不应该依赖低层模块(变化),二者都应该依赖于抽象;抽象不应该依赖于实现细节,实现细节应该依赖于抽象。开放封闭原则对扩展开放,对更改封闭;类模块应该可以是可扩展的,但是不可以修改。单一职责原则一个类应该仅有一个引起它变化的原因;变化的方向隐含着类的责任。Liskov替换原则子类必须能够替换它们的基类;继承表达类型抽象。接口隔离原则不应该强迫客户程序依赖它们不用的方法;接口应该小而完原创 2021-08-07 16:04:05 · 100 阅读 · 0 评论 -
opencv3.4.10 算法测试
原图双边滤波器 (bilateralFilter)高斯低通滤波计算邻域中像素值的加权平均值,其中权重随着距邻域中心的距离而减小。虽然可以给出这种权重下降的正式和定量解释,但直觉是图像通常在空间上变化缓慢,因此附近的像素可能具有相似的值,因此将它们平均在一起是合适的。破坏这些附近像素的噪声值相互之间的相关性低于信号值,缓慢空间变化的假设在边缘失败,因此被线性低通滤波模糊。我们如何防止跨边缘求平均,同时仍然在平滑区域内求平均? 许多努力致力于减少这种不希望的影响。双边滤波是一种简单的、非迭代的边缘保留平滑原创 2021-08-06 17:23:11 · 324 阅读 · 0 评论 -
STL标准库算法测试 algorithm (二)
头文件algorithm find, find_of, find_if_not, find_end, find_first_of, adjacent_fing, count, count_if, mismatch, equal#include <iostream>#include <vector>#include <algorithm>//all_oftemplate <typename T>class Test_std_algorithm原创 2021-08-06 15:17:57 · 168 阅读 · 0 评论 -
盲图像去模糊笔记——非深度学习方法简介,no-kernel, no-DL
盲图像去模糊是指在不知道潜在模糊核的情况下恢复潜在的清晰图像。在自然图像上,传统的基于梯度的图像先验去模糊往往失败,这种方法通常倾向于在傅里叶域中的低频信息。更加复杂的先验有,基于框架的先验[1],基于稀疏编码的先验[2],低秩先验[3]和暗通道先验[4]。[1]基于框架的先验依赖于自制的小波函数,在异构场景中能力较差。[5]基于L0范数的先验在本质上是组合的(因此是非凸的),其对L1范数的凸松弛需要敏感的参数调优以获得最优性能。[2]基于稀疏编码的先验假设了训练集和标签集有一个稳定的相似性,这在实原创 2021-08-06 10:16:34 · 2539 阅读 · 0 评论 -
STL 标准库算法测试
头文件为 algorithm , 算法由all_of, any_of, sort#include <iostream>#include <vector>#include <algorithm>//all_oftemplate <typename T>class Test_std_algorithm {public: void add_vector_para(const T& a) { vec.push_back(a); } vo原创 2021-08-04 20:13:47 · 185 阅读 · 0 评论 -
求最大子数组——分治递归,暴力
最大子数组代码import mathdef Find_Max_Crossing_Subarray(A : [], low, mid, high): left_sum = float('-inf') sum = 0 for i in range(mid, low-1, -1): sum = sum + A[i] if sum > left_sum: left_sum = sum max_le原创 2021-05-18 17:48:02 · 160 阅读 · 0 评论 -
使用一阶微分处理图像——梯度
使用一阶微分处理图像——梯度函数f(x,y)梯度的定义几何特性是 f 在位置(x, y)处最大变化率的方向。其幅值表示为M(x, y)。M(x,y)也是图像,里面的值是梯度,通常称为梯度图像梯度向量的分量是微分,所以它们是微分算子。但向量的幅度不是,因为做了平方和平方根操作。另一方面偏微分不是旋转不变的(各向同性),而梯度向量的幅度是旋转不变的。在某些实现中,用绝对值来近似平方和平方根更适合计算。注一维函数f(x)的一阶微分差分形式:罗伯特交叉梯度算子偶数模板不好实现,改进为3*原创 2021-05-23 19:30:40 · 1604 阅读 · 0 评论 -
图像处理——拉普拉斯算子(python代码)
二阶微分锐化图像–拉普拉斯算子拉普拉斯算子的定义着重于图像中的灰度突变区域,而非灰度级缓慢变化的区域,会产生暗色背景中叠加有浅辉边界线和突变点(轮廓)。原图加拉普拉斯算子计算后的图像可以使图像锐化。离散形式描述滤波器模板描述代码import numpy as npfrom PIL import Imageimport cv2imgfile = "Gakki.jpg"OriginalPic = np.array(Image.open(imgfile).convert('L')原创 2021-05-22 18:11:08 · 9532 阅读 · 0 评论 -
Double DQN 论文阅读笔记(估计误差导致的过度乐观)
原文地址问题更普遍地证明,任何类型的估计误差都可能导致向上偏差,无论这些误差是否是由于噪声、函数近似、非平稳性或任何其他来源。关于这个问题的实验证明这张图是实验性质的。前提:横坐标是状态S,这里每个状态有10个动作a。真实值是 Q∗(s,a) Q_{*}(s,a)Q∗(s,a) 假设真正的最佳价值只取决于状态,所以每个动作都有相同的真实价值。图像的描述:图中左侧一列中紫色的曲线是定义好的真实价值。顶部是Q∗(s,a)=sin(s) Q_{*}(s,a) = sin(s)Q∗(s,a)=原创 2021-03-05 19:46:54 · 480 阅读 · 0 评论