回归评价指标MSE、RMSE、MAE、R-Squared

本文深入解析回归任务中常见的评价指标MSE、RMSE、MAE和R-Squared的作用与计算方法,帮助理解模型精度评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归评价指标MSE、RMSE、MAE、R-Squared

参考:https://www.jianshu.com/p/9ee85fdad150

<think>好的,用户的问题是关于如何使用Boston房价数据集进行回归预测,并绘制包含MSERMSEMAE、R-Squared评估指标的图表,同时明确横轴和纵轴的意义。我需要分步骤来回答这个问题。 首先,我需要回忆Boston房价数据集的基本情况,这是一个经典的回归问题数据集,包含房屋特征和房价中位数。用户提到了使用sklearn库,所以应该涉及加载数据集、分割数据、训练模型等步骤。 接下来,用户需要知道如何计算MSERMSEMAE、R-Squared。根据引用[1]和[2],R-Squared的计算方法已经提到,残差平方和和总平方和的关系。而MSE是均方误差,即预测值与真实值差的平方的平均值,RMSEMSE的平方根,MAE是平均绝对误差。这些指标在sklearn的metrics模块中都有现成的函数,比如mean_squared_error、mean_absolute_error、r2_score。 然后是关于图表的绘制。用户提到横轴和纵轴的意义,通常残差图中横轴是预测值,纵轴是残差(真实值-预测值),如引用[2]所述。但用户的问题可能是指预测结果的可视化,比如将真实值和预测值进行对比,这时候横轴通常是真实值,纵轴是预测值,或者反过来。需要确认哪种更合适。通常真实值作为横轴,预测值作为纵轴,这样可以观察预测值是否围绕真实值分布,理想情况下应该是一条45度的直线。 在代码实现方面,用户可能希望看到具体的步骤,比如加载数据、分割数据集、训练线性回归模型、预测、计算指标、绘制图表。引用[3]中的步骤可以作为参考,包括使用train_test_split分割数据,使用LinearRegression进行训练和预测,然后使用metrics中的函数计算指标。同时,可能需要使用matplotlib来绘制图表。 用户还可能需要注意模型评估部分的解释,比如各个指标的意义。比如MSERMSE的单位与目标变量一致,RMSE更容易解释,MAE对异常值不敏感,R-Squared表示模型解释的方差比例等,这些都需要在回答中说明。 另外,用户提到的绘制图表需要包含四个评估指标,可能需要将这些指标的值显示在图表的标题或图例中。例如,在散点图中展示真实值与预测值的关系,并在图表标题或旁边标注各个指标的值。 最后,需要确保回答的结构清晰,逐步引导用户完成整个过程,并解释每个步骤的目的和结果。同时,根据用户提供的引用,正确引用相关部分,例如在解释R-Squared时引用[1],在残差图部分引用[2],在代码步骤引用[3]。</think>### 使用Boston房价数据集进行回归预测的步骤及评估指标说明 #### 一、实现步骤 1. **数据加载与分割** 使用`sklearn.datasets.load_boston()`加载数据集,将特征变量与目标变量(房价中位数)分离。按3:1比例分割为训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) ``` 2. **模型训练与预测** 定义线性回归模型并训练: ```python from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) ``` 3. **评估指标计算** - **MSE(均方误差)**:预测值与真实值差的平方的均值 $$MSE = \frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$ - **RMSE(均方根误差)**:MSE的平方根,与目标变量单位一致 $$RMSE = \sqrt{MSE}$$ - **MAE(平均绝对误差)**:预测值与真实值绝对差的均值 $$MAE = \frac{1}{n}\sum_{i=1}^n |y_i - \hat{y}_i|$$ - **R-Squared(决定系数)**:衡量模型对数据方差的解释能力,值越大性能越好 $$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$ 其中$SS_{res}$为残差平方和,$SS_{tot}$为总平方和[^1]。 代码实现: ```python from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) ``` 4. **结果可视化** **图表横轴为真实值(`y_test`),纵轴为预测值(`y_pred`)**,理想情况下散点应分布在45°直线附近。添加评估指标到标题: ```python plt.scatter(y_test, y_pred) plt.xlabel("真实房价") plt.ylabel("预测房价") plt.title(f"MSE={mse:.2f}, RMSE={rmse:.2f}, MAE={mae:.2f}, R²={r2:.2f}") plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--') # 绘制参考线 plt.show() ``` --- #### 二、图表轴意义说明 - **横轴(真实值)**:实际房价中位数,反映数据真实分布。 - **纵轴(预测值)**:模型预测的房价中位数,用于对比预测与真实值的偏离程度。 若残差随机分布在参考线附近,说明模型预测性能较好[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值