spark常用命令 Spark SQL – map() vs mapPartitions() | flatMap()

本文介绍了PySpark中的map和flatMap操作。通过示例展示了如何使用map将DataFrame转换为RDD并进行元素操作,以及如何使用flatMap对字符串进行拆分。map用于对每个元素应用函数,而flatMap则用于将元素拆分成多个项。这两个函数在大规模数据处理中具有重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 注意1: DataFrame没有可与DataFrame一起使用的map()转换,因此您需要先将DataFrame转换为RDD。
  • 注意2:如果您有大量初始化,请使用PySpark mapPartitions()转换而不是map(),就像mapPartitions()一样,大量初始化仅对每个分区执行一次,而不对每个记录执行一次。

map()例子1

首先,让我们从列表中创建一个RDD。

from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[1]") \
    .appName("SparkByExamples.com").getOrCreate()

data = ["Project","Gutenberg’s","Alice’s","Adventures",
"in","Wonderland","Project","Gutenberg’s","Adventures",
"in","Wonderland","Project","Gutenberg’s"]

rdd=spark.sparkContext.parallelize(data)

 我们为每个元素添加一个值为1的新元素

rdd2=rdd.map(lambda x: (x,1))
for element in rdd2.collect():
    print(element)

 pyspark rdd地图转换pyspark rdd地图转换

 map()例子2


data = [('James','Smith','M',30),
  ('Anna','Rose','F',41),
  ('Robert','Williams','M',62), 
]

columns = ["firstname","lastname","gender","salary"]
df = spark.createDataFrame(data=data, schema = columns)
df.show()
+---------+--------+------+------+
|firstname|lastname|gender|salary|
+---------+--------+------+------+
|    James|   Smith|     M|    30|
|     Anna|    Rose|     F|    41|
|   Robert|Williams|     M|    62|
+---------+--------+------+------+

# 将x[0],x[1]合并,逗号为分隔符
rdd2=df.rdd.map(lambda x: 
    (x[0]+","+x[1],x[2],x[3]*2)
    )  
df2=rdd2.toDF(["name","gender","new_salary"]   )
df2.show()
+---------------+------+----------+
|           name|gender|new_salary|
+---------------+------+----------+
|    James,Smith|     M|        60|
|      Anna,Rose|     F|        82|
|Robert,Williams|     M|       124|
+---------------+------+----------+

 

flatMap()例子

首先,让我们从列表中创建一个RDD。

data = ["Project Gutenberg’s",
        "Alice’s Adventures in Wonderland",
        "Project Gutenberg’s",
        "Adventures in Wonderland",
        "Project Gutenberg’s"]
rdd=spark.sparkContext.parallelize(data)
for element in rdd.collect():
    print(element)

这将产生以下输出

rdd输出

 

rdd2=rdd.flatMap(lambda x: x.split(" "))
for element in rdd2.collect():
    print(element)
Project
Gutenberg’s
Alice’s
Adventures
in
Wonderland
Project
Gutenberg’s
Adventures
in
Wonderland
Project
Gutenberg’s

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值