深度学习实战8-基于神经网络将真实照片转化为生动有趣的卡通风格图像

生活照片转化漫画照片实战案例
本文介绍生活照片转化漫画照片实战案例,参考《CartoonRenderer:An Instance-based Multi-Style Cartoon Image Translator》论文,阐述漫画图片生成原理,利用对抗神经网络原理构建模型。还给出代码安装指令,展示生成效果,并提及深度学习图像处理需熟悉的模型及往期深度学习实战项目。

家好,我是微学AI,今天给大家带来一个生活照片转化漫画照片实战案例。让大家不要花钱去找人设计漫画照片了,这个是设计头像神器,很赶时髦。算法参考论文《CartoonRenderer:An Instance-based Multi-Style Cartoon Image Translator》。

目录

一、论文介绍

二、漫画图片生成原理

1. 多尺度特征抽取与实例分割

2. 特征空间转换与 Soft-AdaIN

3. 多风格渲染与生成

​三、代码部分

四、生成效果


一、论文介绍

format,png

format,png

二、漫画图片生成原理

1. 多尺度特征抽取与实例分割

  • 多尺度特征编码:输入图像通过编码器提取多尺度特征(如低、中、高分辨率特征),以捕捉不同层次的语义信息(如边缘、纹理、全局结构)。
  • 实例分割:采用实例分割模型(如 Mask R-CNN)将图像划分为不同的语义实例(如人物、背景、物体),为每个实例独立分配风格转换参数,避免全局风格转换导致的语义混淆。

2. 特征空间转换与 Soft-AdaIN

  • 特征模型构建:将原始图像的特征映射到一个统一的特征模型空间,实现内容与风格的解耦。
  • Soft-AdaIN(Soft Adaptive Instance Normalization)
  • 问题:传统 AdaIN 直接替换特征的均值和方差,导致内容与风格的统计特性不匹配,生成结果不协调。
  • 解决方案:引入两个小型网络(内容感知器和风格感知器),动态计算内容特征与风格特征的融合权重,生成自适应的归一化参数:
  • \mu u', o' = Soft-AdaIN(\mu c, Oc, \mu s, Os)
  • 其中,μc​,σc​ 是内容特征的均值和方差,μs​,σs​ 是风格特征的均值和方差。
  • 特征融合
  • y = \sigma ' \frac{x- \mu_c}{\sigma_c}+ \mu'
  • 该公式通过融合权重动态调整特征的分布,实现内容与风格的自然融合。

3. 多风格渲染与生成

  • 解码器:基于 Soft-AdaIN 处理后的特征,通过解码器生成多风格卡通图像。解码器采用渐进式上采样,逐步恢复高分辨率细节。
  • 风格控制:通过输入不同的风格向量(如不同艺术家的笔触模式),控制生成结果的风格差异。

format,png

图像生成的过程就是利用对抗神经网络原理构建。本模型是利用CartonRenderer自动编码器,模型网络将输入图像映射到特征空间。与Adain 6和MUNIT 7中使用的传统编码器不同,我们的建模网络将输入图像映射到多尺度特征空间,是单个固定比例要素空间的。CartonRenderer的参数优化部分是由四个S-AdaIN块组成,对应于特征模型。每个S-AdaIN块用于对齐相应的刻度。其过程还是相对复杂的。

代码部分

快速开始:安装代码如下:

pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

代码实现部分:

import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

img_cartoon = pipeline(Tasks.image_portrait_stylization,
                       model='damo/cv_unet_person-image-cartoon_compound-models',
                       device='cpu')
# 图像本地路径
img_path = 'input.png'

result = img_cartoon(img_path)
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
print('完成!')

四、生成效果

以下是风景图的漫画风格生成效果:

format,png

format,png

图像生成代码后续更新,敬请期待!!

大家要学习深度学习图像处理、识别方向,需要熟悉以下模型:VGG-16、ResNet-50 、 Xception、Inception-v4、Inception-ResNet-V2、ResNeXt-50 、RegNet、ConvNeX,这些模型都是近几年流行的图像分类识别模型。

 往期作品:

深度学习实战项目

1.深度学习实战1-(keras框架)企业数据分析与预测

2.深度学习实战2-(keras框架)企业信用评级与预测

3.深度学习实战3-文本卷积神经网络(TextCNN)新闻文本分类

4.深度学习实战4-卷积神经网络(DenseNet)数学图形识别+题目模式识别

5.深度学习实战5-卷积神经网络(CNN)中文OCR识别项目

6.深度学习实战6-卷积神经网络(Pytorch)+聚类分析实现空气质量与天气预测

7.深度学习实战7-电商产品评论的情感分析

8.深度学习实战8-生活照片转化漫画照片应用

9.深度学习实战9-文本生成图像-本地电脑实现text2img

10.深度学习实战10-数学公式识别-将图片转换为Latex(img2Latex)

11.深度学习实战11(进阶版)-BERT模型的微调应用-文本分类案例

12.深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正

13.深度学习实战13(进阶版)-文本纠错功能,经常写错别字的小伙伴的福星

14.深度学习实战14(进阶版)-手写文字OCR识别,手写笔记也可以识别了

15.深度学习实战15(进阶版)-让机器进行阅读理解+你可以变成出题者提问

16.深度学习实战16(进阶版)-虚拟截图识别文字-可以做纸质合同和表格识别

17.深度学习实战17(进阶版)-智能辅助编辑平台系统的搭建与开发案例

18.深度学习实战18(进阶版)-NLP的15项任务大融合系统,可实现市面上你能想到的NLP任务

19.深度学习实战19(进阶版)-ChatGPT的本地实现部署测试,自己的平台就可以实现ChatGPT

...(待更新)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值